Changes of vascular endothelial growth factor (VEGF) secretion have recently been demonstrated in patients with Alzheimer's disease (AD). Since VEGF has been involved in brain angiogenesis, neuroprotection and cerebromicrovascular exchange of substrates and nutrients, the study of VEGF could have important relapses into the pathogenesis and treatment of AD. Within this context, 35 healthy subjects (16 of young and 19 of old age), 18 patients with dementia of the vascular type (VAD) and 22 with dementia of the Alzheimer's type (AD) were included in the study. VEGF levels were determined in the supernates of circulating natural killer (NK) immune cells isolated by immunomagnetic separation (pure CD16 + CD56 + NK cells at a final density of 7.75 × 10 6 cells/ml). VEGF was measured in spontaneous conditions (without modulation) and after exposure of NK cells with IL-2, lipopolysaccharide (LPS), dehydroepiandrosterone sulfate (DHEAS), LPS + insulin, amyloid-β (Aβ) fragment 1-42, the inactive sequence Aβ 40-1 and Aβ 1-42 + insulin. A significant decrease in VEGF released by NK cells was demonstrated in AD subjects compared to the other groups. No differences of VEGF levels were found between healthy subjects of old age and the VAD group. The incubation with LPS and DHEAS significantly increased, in a dose-dependent manner, VEGF levels in AD as well as in healthy subjects of young and old age and in VAD patients. The incubation of NK cells with Aβ 1-42 completely suppressed VEGF generation in AD subjects, also reducing VEGF release in the other groups. The co-incubation of NK with LPS + insulin, at different molar concentrations, significantly restored (4- and 6-fold increase from LPS alone) VEGF in AD, also enhancing VEGF secretion in healthy subjects and the VAD group, while the co-incubation of NK with Aβ 1-42 + insulin promptly abolished the negative effects of Aβ 1-42 on VEGF release. These data might suggest that the decreased VEGF secretion by peripheral immune cells of AD subjects could have a negative role for brain angiogenesis, neuroprotection and for brain microvascular permeability to nutrients, increasing brain frailty towards hypoxic injuries. On the contrary, insulin and DHEAS could have beneficial effects in AD, as well as in VAD and in physiological aging, by increasing, in a dose-dependent fashion, VEGF availability by peripheral and resident immune and endothelial cells, so contributing to increase its circulating pool.

Decreased release of the angiogenic peptide vascular endothelial growth factor in alzheimer's disease : Recovering effect with insulin and DHEA sulfate / S.B. Solerte, E. Ferrari, G. Cuzzoni, E. Locatelli, A. Giustina, M. Zamboni, N. Schifino, M. Rondanelli, C. Gazzaruso, M. Fioravanti. - In: DEMENTIA AND GERIATRIC COGNITIVE DISORDERS. - ISSN 1420-8008. - 19:1(2005), pp. 1-10. [10.1159/000080963]

Decreased release of the angiogenic peptide vascular endothelial growth factor in alzheimer's disease : Recovering effect with insulin and DHEA sulfate

C. Gazzaruso
Penultimo
;
2005

Abstract

Changes of vascular endothelial growth factor (VEGF) secretion have recently been demonstrated in patients with Alzheimer's disease (AD). Since VEGF has been involved in brain angiogenesis, neuroprotection and cerebromicrovascular exchange of substrates and nutrients, the study of VEGF could have important relapses into the pathogenesis and treatment of AD. Within this context, 35 healthy subjects (16 of young and 19 of old age), 18 patients with dementia of the vascular type (VAD) and 22 with dementia of the Alzheimer's type (AD) were included in the study. VEGF levels were determined in the supernates of circulating natural killer (NK) immune cells isolated by immunomagnetic separation (pure CD16 + CD56 + NK cells at a final density of 7.75 × 10 6 cells/ml). VEGF was measured in spontaneous conditions (without modulation) and after exposure of NK cells with IL-2, lipopolysaccharide (LPS), dehydroepiandrosterone sulfate (DHEAS), LPS + insulin, amyloid-β (Aβ) fragment 1-42, the inactive sequence Aβ 40-1 and Aβ 1-42 + insulin. A significant decrease in VEGF released by NK cells was demonstrated in AD subjects compared to the other groups. No differences of VEGF levels were found between healthy subjects of old age and the VAD group. The incubation with LPS and DHEAS significantly increased, in a dose-dependent manner, VEGF levels in AD as well as in healthy subjects of young and old age and in VAD patients. The incubation of NK cells with Aβ 1-42 completely suppressed VEGF generation in AD subjects, also reducing VEGF release in the other groups. The co-incubation of NK with LPS + insulin, at different molar concentrations, significantly restored (4- and 6-fold increase from LPS alone) VEGF in AD, also enhancing VEGF secretion in healthy subjects and the VAD group, while the co-incubation of NK with Aβ 1-42 + insulin promptly abolished the negative effects of Aβ 1-42 on VEGF release. These data might suggest that the decreased VEGF secretion by peripheral immune cells of AD subjects could have a negative role for brain angiogenesis, neuroprotection and for brain microvascular permeability to nutrients, increasing brain frailty towards hypoxic injuries. On the contrary, insulin and DHEAS could have beneficial effects in AD, as well as in VAD and in physiological aging, by increasing, in a dose-dependent fashion, VEGF availability by peripheral and resident immune and endothelial cells, so contributing to increase its circulating pool.
Aging; Alzheimer's disease; Amyloid peptides; Dehydroepiandrosterone sulfate; Immunity; Insulin; Natural killer cells; Neurodegeneration; Vascular dementia; Vascular endothelial growth factor
Settore MED/13 - Endocrinologia
Settore MED/09 - Medicina Interna
2005
Article (author)
File in questo prodotto:
File Dimensione Formato  
2005 Dement Geriatr Cogn Disord DHEA.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 797.23 kB
Formato Adobe PDF
797.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/854574
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 38
social impact