Growing evidence highlights the crucial role of gut microbiota in affecting different aspects of obesity. Considering the ability of deep transcranial magnetic stimulation (dTMS) to modulate the cortical excitability, the reward system, and, indirectly, the autonomic nervous system (ANS), we hypothesized a potential role of dTMS in affecting the brain-gut communication pathways, and the gut microbiota composition in obesity. In a hospital setting, 22 subjects with obesity (5 M, 17 F; 44.9 ± 2.2 years; BMI 37.5 ± 1.0 kg/m2) were randomized into three groups receiving 15 sessions (3 per week for 5 weeks) of high frequency (HF), low frequency (LF) dTMS, or sham stimulation. Fecal samples were collected at baseline and after 5 weeks of treatment. Total bacterial DNA was extracted from fecal samples using the QIAamp DNA Stool Mini Kit (Qiagen, Italy) and analyzed by a metagenomics approach (Ion Torrent Personal Genome Machine). After 5 weeks, a significant weight loss was found in HF (HF: -4.1 ± 0.8%, LF: -1.9 ± 0.8%, sham: -1.3 ± 0.6%, p = 0.042) compared to LF and sham groups, associated with a decrease in norepinephrine compared to baseline (HF: -61.5 ± 15.2%, p < 0.01; LF: -31.8 ± 17.1%, p < 0.05; sham: -35.8 ± 21.0%, p > 0.05). Furthermore, an increase in Faecalibacterium (+154.3% vs. baseline, p < 0.05) and Alistipes (+153.4% vs. baseline, p < 0.05) genera, and a significant decrease in Lactobacillus (-77.1% vs. baseline, p < 0.05) were found in HF. Faecalibacterium variations were not significant compared to baseline in the other two groups (LF: +106.6%, sham: +27.6%; p > 0.05) as well as Alistipes (LF: -54.9%, sham: -15.1%; p > 0.05) and Lactobacillus (LF: -26.0%, sham: +228.3%; p > 0.05) variations. Norepinephrine change significantly correlated with Bacteroides (r2 = 0.734; p < 0.05), Eubacterium (r2 = 0.734; p < 0.05), and Parasutterella (r2 = 0.618; p < 0.05) abundance variations in HF. In conclusion, HF dTMS treatment revealed to be effective in modulating gut microbiota composition in subjects with obesity, reversing obesity-associated microbiota variations, and promoting bacterial species representative of healthy subjects with anti-inflammatory properties.

Deep transcranial magnetic stimulation affects gut microbiota composition in obesity : results of randomized clinical trial / A. Ferrulli, L. Drago, S. Gandini, S. Massarini, F. Bellerba, P. Senesi, I.M. Terruzzi, L. Luzi. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1661-6596. - 22:9(2021 Apr 29), pp. 4692.1-4692.20. [10.3390/ijms22094692]

Deep transcranial magnetic stimulation affects gut microbiota composition in obesity : results of randomized clinical trial

A. Ferrulli
Primo
;
L. Drago
Secondo
;
F. Bellerba;P. Senesi;I.M. Terruzzi
Penultimo
;
L. Luzi
Ultimo
2021

Abstract

Growing evidence highlights the crucial role of gut microbiota in affecting different aspects of obesity. Considering the ability of deep transcranial magnetic stimulation (dTMS) to modulate the cortical excitability, the reward system, and, indirectly, the autonomic nervous system (ANS), we hypothesized a potential role of dTMS in affecting the brain-gut communication pathways, and the gut microbiota composition in obesity. In a hospital setting, 22 subjects with obesity (5 M, 17 F; 44.9 ± 2.2 years; BMI 37.5 ± 1.0 kg/m2) were randomized into three groups receiving 15 sessions (3 per week for 5 weeks) of high frequency (HF), low frequency (LF) dTMS, or sham stimulation. Fecal samples were collected at baseline and after 5 weeks of treatment. Total bacterial DNA was extracted from fecal samples using the QIAamp DNA Stool Mini Kit (Qiagen, Italy) and analyzed by a metagenomics approach (Ion Torrent Personal Genome Machine). After 5 weeks, a significant weight loss was found in HF (HF: -4.1 ± 0.8%, LF: -1.9 ± 0.8%, sham: -1.3 ± 0.6%, p = 0.042) compared to LF and sham groups, associated with a decrease in norepinephrine compared to baseline (HF: -61.5 ± 15.2%, p < 0.01; LF: -31.8 ± 17.1%, p < 0.05; sham: -35.8 ± 21.0%, p > 0.05). Furthermore, an increase in Faecalibacterium (+154.3% vs. baseline, p < 0.05) and Alistipes (+153.4% vs. baseline, p < 0.05) genera, and a significant decrease in Lactobacillus (-77.1% vs. baseline, p < 0.05) were found in HF. Faecalibacterium variations were not significant compared to baseline in the other two groups (LF: +106.6%, sham: +27.6%; p > 0.05) as well as Alistipes (LF: -54.9%, sham: -15.1%; p > 0.05) and Lactobacillus (LF: -26.0%, sham: +228.3%; p > 0.05) variations. Norepinephrine change significantly correlated with Bacteroides (r2 = 0.734; p < 0.05), Eubacterium (r2 = 0.734; p < 0.05), and Parasutterella (r2 = 0.618; p < 0.05) abundance variations in HF. In conclusion, HF dTMS treatment revealed to be effective in modulating gut microbiota composition in subjects with obesity, reversing obesity-associated microbiota variations, and promoting bacterial species representative of healthy subjects with anti-inflammatory properties.
deep transcranial magnetic stimulation; obesity; gut microbiota; norepinephrine
Settore MED/13 - Endocrinologia
29-apr-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
ijms-22-04692.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/853748
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact