The continuous and automated monitoring of canopy phenology is of increasing scientific interest for the multiple implications of vegetation dynamics on ecosystem carbon and energy fluxes. For this purpose we evaluated the applicability of digital camera imagery for monitoring and modeling phenology and physiology of a subalpine grassland over the 2009 and 2010 growing seasons.We tested the relationships between color indices (i.e. the algebraic combinations of RGB brightness levels) tracking canopy greenness extracted from repeated digital images against field measurements of green and total biomass, leaf area index (LAI), greenness visual estimation, vegetation indices computed from continuous spectroradiometric measurements and CO2 fluxes observed with the eddy covariance technique. A strong relationship was found between canopy greenness and (i) structural parameters (i.e., LAI) and (ii) canopy photosynthesis (i.e. Gross Primary Production; GPP). Color indices were also well correlated with vegetation indices typically used for monitoring landscape phenology from satellite, suggesting that digital repeat photography provides high-quality ground data for evaluation of satellite phenology products.We demonstrate that by using canopy greenness we can refine phenological models (Growing Season Index, GSI) by describing canopy development and considering the role of ecological factors (e.g., snow, temperature and photoperiod) controlling grassland phenology. Moreover, we show that canopy greenness combined with radiation use efficiency (RUE) obtained from spectral indices related to photochemistry (i.e., scaled Photochemical Reflectance Index) or meteorology (i.e., MOD17 RUE) can be used to predict daily GPP.Building on previous work that has demonstrated that seasonal variation in the structure and function of plant canopies can be quantified using digital camera imagery, we have highlighted the potential use of these data for the development and parameterization of phenological and RUE models, and thus point toward an extension of the proposed methodologies to the dataset collected within PhenoCam Network.

Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake / M. Migliavacca, M. Galvagno, E. Cremonese, M. Rossini, M. Meroni, O. Sonnentag, S. Cogliati, G. Manca, F. Diotri, L. Busetto, A. Cescatti, R. Colombo, F. Fava, U. Morra di Cella, E. Pari, C. Siniscalco, A.D. Richardson. - In: AGRICULTURAL AND FOREST METEOROLOGY. - ISSN 0168-1923. - 151:10(2011 Oct 15), pp. 1325-1337. [10.1016/j.agrformet.2011.05.012]

Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake

F. Fava;
2011-10-15

Abstract

The continuous and automated monitoring of canopy phenology is of increasing scientific interest for the multiple implications of vegetation dynamics on ecosystem carbon and energy fluxes. For this purpose we evaluated the applicability of digital camera imagery for monitoring and modeling phenology and physiology of a subalpine grassland over the 2009 and 2010 growing seasons.We tested the relationships between color indices (i.e. the algebraic combinations of RGB brightness levels) tracking canopy greenness extracted from repeated digital images against field measurements of green and total biomass, leaf area index (LAI), greenness visual estimation, vegetation indices computed from continuous spectroradiometric measurements and CO2 fluxes observed with the eddy covariance technique. A strong relationship was found between canopy greenness and (i) structural parameters (i.e., LAI) and (ii) canopy photosynthesis (i.e. Gross Primary Production; GPP). Color indices were also well correlated with vegetation indices typically used for monitoring landscape phenology from satellite, suggesting that digital repeat photography provides high-quality ground data for evaluation of satellite phenology products.We demonstrate that by using canopy greenness we can refine phenological models (Growing Season Index, GSI) by describing canopy development and considering the role of ecological factors (e.g., snow, temperature and photoperiod) controlling grassland phenology. Moreover, we show that canopy greenness combined with radiation use efficiency (RUE) obtained from spectral indices related to photochemistry (i.e., scaled Photochemical Reflectance Index) or meteorology (i.e., MOD17 RUE) can be used to predict daily GPP.Building on previous work that has demonstrated that seasonal variation in the structure and function of plant canopies can be quantified using digital camera imagery, we have highlighted the potential use of these data for the development and parameterization of phenological and RUE models, and thus point toward an extension of the proposed methodologies to the dataset collected within PhenoCam Network.
Color indices; Digital repeat photography; Gross primary production; Growing Season Index; Phenology; Subalpine grasslands
Settore AGR/02 - Agronomia e Coltivazioni Erbacee
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0168192311001705-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/853394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 156
  • ???jsp.display-item.citation.isi??? 147
social impact