This work aimed to investigate the contamination pattern in Kongsfjorden marine environment (Svalbard, 79 degrees N 12 degrees E) and to disentangle primary and secondary emissions. Surface seawater, sampled in two seasons, was analysed by GC-MS and LC-MS/MS to detect polychlorobiphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenols (NPs), bisphenol A (BPA) and perfluoroalkyl and polyfluomalkyl substances (PFASs). In summer, average Sigma PAHs, BPA, Sigma NPs, Sigma PFASs and Sigma PCBs concentrations were 17.3 +/- 11.1 ng/L, 0.9 +/- 0.3 ng/L, 10.0 +/- 6.9 ng/L, 0.4 +/- 0.7 ng/L and 1.8 +/- 1.3 pg/L, respectively; while in winter, they were 13.6 +/- 10.1 ng/L, 0.5 +/- 0.2 ng/L, 6.8 +/- 3.3 ng/L, LOD and 0.6 +/- 0.4 pg/L, respectively. The application of generalized linear models (GLMs) highlighted that: PEAS pattern agrees their predominant long-range hydrospheric transport; the additive effect of the distance to glacier and harbour affected PAH, NP and BPA distributions; the additive effect of season and distance from the glacier, but not their interaction, influenced PCBs distribution, indicating melting glaciers as potential secondary POP sources.

Occurrence, distribution and pollution pattern of legacy and emerging organic pollutants in surface water of the Kongsfjorden (Svalbard, Norway) : Environmental contamination, seasonal trend and climate change / N. Ademollo, F. Spataro, J. Rauseo, T. Pescatore, N. Fattorini, S. Valsecchi, S. Polesello, L. Patrolecco. - In: MARINE POLLUTION BULLETIN. - ISSN 0025-326X. - 163(2021), pp. 111900.1-111900.11.

Occurrence, distribution and pollution pattern of legacy and emerging organic pollutants in surface water of the Kongsfjorden (Svalbard, Norway) : Environmental contamination, seasonal trend and climate change

N. Fattorini;
2021

Abstract

This work aimed to investigate the contamination pattern in Kongsfjorden marine environment (Svalbard, 79 degrees N 12 degrees E) and to disentangle primary and secondary emissions. Surface seawater, sampled in two seasons, was analysed by GC-MS and LC-MS/MS to detect polychlorobiphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), nonylphenols (NPs), bisphenol A (BPA) and perfluoroalkyl and polyfluomalkyl substances (PFASs). In summer, average Sigma PAHs, BPA, Sigma NPs, Sigma PFASs and Sigma PCBs concentrations were 17.3 +/- 11.1 ng/L, 0.9 +/- 0.3 ng/L, 10.0 +/- 6.9 ng/L, 0.4 +/- 0.7 ng/L and 1.8 +/- 1.3 pg/L, respectively; while in winter, they were 13.6 +/- 10.1 ng/L, 0.5 +/- 0.2 ng/L, 6.8 +/- 3.3 ng/L, LOD and 0.6 +/- 0.4 pg/L, respectively. The application of generalized linear models (GLMs) highlighted that: PEAS pattern agrees their predominant long-range hydrospheric transport; the additive effect of the distance to glacier and harbour affected PAH, NP and BPA distributions; the additive effect of season and distance from the glacier, but not their interaction, influenced PCBs distribution, indicating melting glaciers as potential secondary POP sources.
Arctic; Climate change; Endocrine disrupting compounds; Generalized linear models; New POPs; PAHs; Chromatography, Liquid; Climate Change; Environmental Monitoring; Norway; Seasons; Svalbard; Tandem Mass Spectrometry; Water; Environmental Pollutants; Polycyclic Aromatic Hydrocarbons; Water Pollutants, Chemical
Settore BIO/07 - Ecologia
2021
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/852473
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact