Background: Widespread use of silver in its different forms raises concerns about potential adverse effects after ingestion, the main exposure route for humans. The aim of this study was to investigate in CD-1 (ICR) male mice the tissue distribution and in vivo effects of 4-week oral exposure to 0.25 and 1 mg Ag/kg bw 10 nm citrate coated silver nanoparticles (AgNPs) and 1 mg Ag/kg bw silver acetate (AgAc) at the end of treatment (EoT) and after 4 weeks of recovery. Results: There were no treatment-related clinical signs and mortality, and no significant effects on body and organ weights at the EoT and after recovery. Treatment-related changes in hematology and clinical chemistry were found after recovery, the most relevant being a dose-dependent lymphopenia and increased triglycerides in AgNP-treated mice, and increased levels of urea in all treated groups, associated with decreased albumin only in AgAc-treated mice. At the EoT the highest silver concentration determined by Triple Quadrupole ICP-MS analysis was found in the brain, followed by testis, liver, and spleen; much lower concentrations were present in the small intestine and kidney. Tissue silver concentrations were slightly higher after exposure to AgAc than AgNPs and dose dependent for AgNPs. After recovery silver was still present in the brain and testis, highlighting slow elimination. No histopathological changes and absence of silver staining by autometallography were observed in the organs of treated mice. At the EoT GFAP (astrocytes) immunoreactivity was significantly increased in the hippocampus of AgNP-treated mice in a dose-dependent manner and Iba1 (microglial cells) immunoreactivity was significantly increased in the cortex of 1 mg/kg bw AgNP-treated mice. After recovery, a significant reduction of Iba1 was observed in the cortex of all treated groups. TEM analysis of the hippocampus revealed splitting of basement membrane of the capillaries and swelling of astrocytic perivascular end-feet in 1 mg/kg bw AgNP- and AgActreated mice at the EoT. Conclusions: Our study revealed accumulation and slow clearance of silver in the brain after oral administration of 10 nm AgNPs and AgAc at low doses in mice, associated with effects on glial cells and ultrastructural alterations of the Blood-Brain Barrier.

Repeated oral administration of low doses of silver in mice : tissue distribution and effects on central nervous system / C. Recordati, M. De Maglie, C. Cella, S. Argentiere, S. Paltrinieri, S. Bianchessi, M. Losa, F. Fiordaliso, A. Corbelli, G. Milite, F. Aureli, M. D’Amato, A. Raggi, F. Cubadda, S. Soldati, C. Lenardi, E. Scanziani. - In: PARTICLE AND FIBRE TOXICOLOGY. - ISSN 1743-8977. - 18:1(2021 Jun 16), pp. 23.1-23.18. [10.1186/s12989-021-00418-x]

Repeated oral administration of low doses of silver in mice : tissue distribution and effects on central nervous system

C. Recordati
Co-primo
;
S. Paltrinieri;C. Lenardi
Penultimo
;
E. Scanziani
Ultimo
2021

Abstract

Background: Widespread use of silver in its different forms raises concerns about potential adverse effects after ingestion, the main exposure route for humans. The aim of this study was to investigate in CD-1 (ICR) male mice the tissue distribution and in vivo effects of 4-week oral exposure to 0.25 and 1 mg Ag/kg bw 10 nm citrate coated silver nanoparticles (AgNPs) and 1 mg Ag/kg bw silver acetate (AgAc) at the end of treatment (EoT) and after 4 weeks of recovery. Results: There were no treatment-related clinical signs and mortality, and no significant effects on body and organ weights at the EoT and after recovery. Treatment-related changes in hematology and clinical chemistry were found after recovery, the most relevant being a dose-dependent lymphopenia and increased triglycerides in AgNP-treated mice, and increased levels of urea in all treated groups, associated with decreased albumin only in AgAc-treated mice. At the EoT the highest silver concentration determined by Triple Quadrupole ICP-MS analysis was found in the brain, followed by testis, liver, and spleen; much lower concentrations were present in the small intestine and kidney. Tissue silver concentrations were slightly higher after exposure to AgAc than AgNPs and dose dependent for AgNPs. After recovery silver was still present in the brain and testis, highlighting slow elimination. No histopathological changes and absence of silver staining by autometallography were observed in the organs of treated mice. At the EoT GFAP (astrocytes) immunoreactivity was significantly increased in the hippocampus of AgNP-treated mice in a dose-dependent manner and Iba1 (microglial cells) immunoreactivity was significantly increased in the cortex of 1 mg/kg bw AgNP-treated mice. After recovery, a significant reduction of Iba1 was observed in the cortex of all treated groups. TEM analysis of the hippocampus revealed splitting of basement membrane of the capillaries and swelling of astrocytic perivascular end-feet in 1 mg/kg bw AgNP- and AgActreated mice at the EoT. Conclusions: Our study revealed accumulation and slow clearance of silver in the brain after oral administration of 10 nm AgNPs and AgAc at low doses in mice, associated with effects on glial cells and ultrastructural alterations of the Blood-Brain Barrier.
Blood brain barrier; Central nervous system; Mouse; Oral administration; Silver acetate; Silver nanoparticles; Tissue distribution; Toxicity
Settore VET/03 - Patologia Generale e Anatomia Patologica Veterinaria
16-giu-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
2021 Recordati_Nanosilver oral.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 2.44 MB
Formato Adobe PDF
2.44 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/852136
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact