Suppose that a countably $n$-rectifiable set $Gamma_0$ is the support of a multiplicity-one stationary varifold in $mathbb{R}^{n+1}$ with a point admitting a flat tangent plane $T$ of density $Q≥2$. We prove that, under a suitable assumption on the decay rate of the blow-ups of $Gamma_0$ towards $T$, there exists a non-constant Brakke flow starting with $Gamma_0$. This shows non-uniqueness of Brakke flow under these conditions, and suggests that the stability of a stationary varifold with respect to mean curvature flow may be used to exclude the presence of flat singularities.

Dynamical instability of minimal surfaces at flat singular points / S. Stuvard, Y. Tonegawa. - In: JOURNAL OF DIFFERENTIAL GEOMETRY. - ISSN 0022-040X. - 130:2(2025 Jun), pp. 477-516. [10.4310/jdg/1747158946]

Dynamical instability of minimal surfaces at flat singular points

S. Stuvard
Primo
;
2025

Abstract

Suppose that a countably $n$-rectifiable set $Gamma_0$ is the support of a multiplicity-one stationary varifold in $mathbb{R}^{n+1}$ with a point admitting a flat tangent plane $T$ of density $Q≥2$. We prove that, under a suitable assumption on the decay rate of the blow-ups of $Gamma_0$ towards $T$, there exists a non-constant Brakke flow starting with $Gamma_0$. This shows non-uniqueness of Brakke flow under these conditions, and suggests that the stability of a stationary varifold with respect to mean curvature flow may be used to exclude the presence of flat singularities.
mean curvature flow; varifolds; singularities of minimal surfaces;
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
giu-2025
https://projecteuclid.org/journals/journal-of-differential-geometry/volume-130/issue-2/Dynamical-instability-of-minimal-surfaces-at-flat-singular-points/10.4310/jdg/1747158946.short
Article (author)
File in questo prodotto:
File Dimensione Formato  
2008.13728v2.pdf

accesso aperto

Descrizione: Dynamical instability of minimal surfaces at flat singular points
Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Publisher
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
1747158946(1).pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 859.08 kB
Formato Adobe PDF
859.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/850458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 1
social impact