Soap films hanging from a wire frame are studied in the framework of capillarity theory. Minimizers in the corresponding variational problem are known to consist of positive volume regions with boundaries of constant mean curvature/pressure, possibly connected by "collapsed" minimal surfaces. We prove here that collapsing only occurs if the mean curvature/pressure of the bulky regions is negative, and that, when this last property holds, the whole soap film lies in the convex hull of its boundary wire frame.
Collapsing and the convex hull property in a soap film capillarity model / D. King, F. Maggi, S. Stuvard. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 38:6(2021 Nov), pp. 1929-1941. [10.1016/j.anihpc.2021.02.005]
Titolo: | Collapsing and the convex hull property in a soap film capillarity model | |
Autori: | STUVARD, SALVATORE (Corresponding) | |
Parole Chiave: | convex hull property; minimal surfaces; Plateau's problem | |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica | |
Data di pubblicazione: | nov-2021 | |
Rivista: | ||
Tipologia: | Article (author) | |
Data ahead of print / Data di stampa: | 15-feb-2021 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.anihpc.2021.02.005 | |
Appare nelle tipologie: | 01 - Articolo su periodico |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Collapsing and the convex hull property in a soap film capillarity model (w: King and Maggi).pdf | Publisher's version/PDF | Administrator Richiedi una copia | ||
2002.06273.pdf | Pre-print (manoscritto inviato all'editore) | Open Access Visualizza/Apri |