We establish a theory of Q-valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p=2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension.
Area minimizing currents mod $2Q$: linear regularity theory / C. De Lellis, J. Hirsch, A. Marchese, S. Stuvard. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 75:1(2022 Jan), pp. 83-127. [10.1002/cpa.21964]
Area minimizing currents mod $2Q$: linear regularity theory
S. Stuvard
2022
Abstract
We establish a theory of Q-valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p=2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Comm Pure Appl Math - 2020 - De Lellis - Area‐Minimizing Currents mod 2Q Linear Regularity Theory.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
389.28 kB
Formato
Adobe PDF
|
389.28 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.