We establish a theory of Q-valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p=2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension.

Area minimizing currents mod $2Q$: linear regularity theory / C. De Lellis, J. Hirsch, A. Marchese, S. Stuvard. - In: COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS. - ISSN 0010-3640. - 75:1(2022 Jan), pp. 83-127. [10.1002/cpa.21964]

Area minimizing currents mod $2Q$: linear regularity theory

S. Stuvard
2022

Abstract

We establish a theory of Q-valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currents mod(p) when p=2Q, and to establish a first general partial regularity theorem for every p in any dimension and codimension.
multiple valued functions; Dirichlet energy; area minimizing currents mod p
Settore MAT/05 - Analisi Matematica
gen-2022
30-nov-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Comm Pure Appl Math - 2020 - De Lellis - Area‐Minimizing Currents mod 2Q Linear Regularity Theory.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 389.28 kB
Formato Adobe PDF
389.28 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/850379
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact