We establish a first general partial regularity theorem for area minimizing currents mod(p), for every p, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m-dimensional area minimizing current mod(p) cannot be larger than m−1. Additionally, we show that, when p is odd, the interior singular set is (m−1)-rectifiable with locally finite (m−1)-dimensional measure.

Regularity of area minimizing currents mod p / C. De Lellis, J. Hirsch, A. Marchese, S. Stuvard. - In: GEOMETRIC AND FUNCTIONAL ANALYSIS. - ISSN 1016-443X. - 30:5(2020 Oct 30), pp. 1224-1336.

Regularity of area minimizing currents mod p

S. Stuvard
2020

Abstract

We establish a first general partial regularity theorem for area minimizing currents mod(p), for every p, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of an m-dimensional area minimizing current mod(p) cannot be larger than m−1. Additionally, we show that, when p is odd, the interior singular set is (m−1)-rectifiable with locally finite (m−1)-dimensional measure.
area minimizing currents mod p; regularity theory; minimal surfaces; multiple valued functions; blow-up analysis
Settore MAT/05 - Analisi Matematica
30-ott-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Regularity of area minimizing currents mod p (w: De Lellis, Hirsch, and Marchese).pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF Visualizza/Apri
DeLellis2020_Article_RegularityOfAreaMinimizingCurr.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/850248
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact