In this note we prove an explicit formula for the lower semicontinuous envelope of some functionals defined on real polyhedral chains. More precisely, denoting by H : R -> [0,infinity) an even, subadditive, and lower semicontinuous function with H(0) = 0, and by Phi(H) the functional induced by H on polyhedral m-chains, namely Phi(H) (P) := Sigma(N)(i=1) H(theta(i))H-m(sigma(i)), for every P = Sigma(N)(i=1)theta(i) [[sigma(i)]] is an element of P-m(R-n), we prove that the lower semicontinuous envelope of Phi(H) coincides on rectifiable m-currents with the H-mass M-H (R) := integral(E) H(theta(x)) dH(m)(x) for every R = [[E, tau, theta]] is an element of R-m(R-n).

On the lower semicontinuous envelope of functionals defined on polyhedral chains / M. Colombo, A. De Rosa, A. Marchese, S. Stuvard. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 163(2017), pp. 201-215.

On the lower semicontinuous envelope of functionals defined on polyhedral chains

S. Stuvard
2017

Abstract

In this note we prove an explicit formula for the lower semicontinuous envelope of some functionals defined on real polyhedral chains. More precisely, denoting by H : R -> [0,infinity) an even, subadditive, and lower semicontinuous function with H(0) = 0, and by Phi(H) the functional induced by H on polyhedral m-chains, namely Phi(H) (P) := Sigma(N)(i=1) H(theta(i))H-m(sigma(i)), for every P = Sigma(N)(i=1)theta(i) [[sigma(i)]] is an element of P-m(R-n), we prove that the lower semicontinuous envelope of Phi(H) coincides on rectifiable m-currents with the H-mass M-H (R) := integral(E) H(theta(x)) dH(m)(x) for every R = [[E, tau, theta]] is an element of R-m(R-n).
Rectifiable currents; H-mass; Polyhedral approximation; Relaxation
Settore MAT/05 - Analisi Matematica
Article (author)
File in questo prodotto:
File Dimensione Formato  
CDRMS_POST_REPORT.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 391.95 kB
Formato Adobe PDF
391.95 kB Adobe PDF Visualizza/Apri
1703.01938.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 225.13 kB
Formato Adobe PDF
225.13 kB Adobe PDF Visualizza/Apri
1-s2.0-S0362546X1730202X-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 853.11 kB
Formato Adobe PDF
853.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/850227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact