We prove that the kernel of the evaluation morphism of global sections — namely the syzygy bundle — of a sufficiently ample line bundle on an abelian variety is stable. This settles a conjecture of Ein–Lazarsfeld–Mustopa, in the case of abelian varieties.

Stability of syzygy bundles on abelian varieties / F. Caucci, M. Lahoz. - In: BULLETIN OF THE LONDON MATHEMATICAL SOCIETY. - ISSN 0024-6093. - (2021). [Epub ahead of print]

Stability of syzygy bundles on abelian varieties

F. Caucci
Primo
;
2021

Abstract

We prove that the kernel of the evaluation morphism of global sections — namely the syzygy bundle — of a sufficiently ample line bundle on an abelian variety is stable. This settles a conjecture of Ein–Lazarsfeld–Mustopa, in the case of abelian varieties.
14J60; 14K05 (primary)
Settore MAT/03 - Geometria
2021
2-mar-2021
Article (author)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/849846
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact