We show how a natural constant introduced by Jiang and Pareschi for a polarized abelian variety encodes information about the syzygies of the section ring of the polarization. As a particular case this gives a quick and characteristic-free proof of Lazarsfeld’s conjecture on syzygies of abelian varieties, originally proved by Pareschi in characteristic zero.

The basepoint-freeness threshold and syzygies of abelian varieties / F. Caucci. - In: ALGEBRA & NUMBER THEORY. - ISSN 1937-0652. - 14:4(2020), pp. 947-960.

The basepoint-freeness threshold and syzygies of abelian varieties

F. Caucci
2020

Abstract

We show how a natural constant introduced by Jiang and Pareschi for a polarized abelian variety encodes information about the syzygies of the section ring of the polarization. As a particular case this gives a quick and characteristic-free proof of Lazarsfeld’s conjecture on syzygies of abelian varieties, originally proved by Pareschi in characteristic zero.
syzygies; abelian varieties; Fourier-Mukai transform
Settore MAT/03 - Geometria
Article (author)
File in questo prodotto:
File Dimensione Formato  
1902.07774 (1).pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 217.85 kB
Formato Adobe PDF
217.85 kB Adobe PDF Visualizza/Apri
ant-v14-n4-p06-s.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/849844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact