Traditional Petri nets lack specific features to conveniently describe systems with an evolving structure. A model based on the Symmetric Net formalism has been recently introduced. It is composed of an emulator reproducing the behaviour of a Place/Transition net (encoded as a marking) and a basic set of net-transformation primitives to specify evolutionary behaviour. In this paper, we discuss the adoption of the stochastic extension of Symmetric Nets for performance analysis, considering important issues related to time specification and analysis complexity. We put into place theoretical aspects by using a running example consisting in a self-healing manufacturing system.

Emulating Self-adaptive Stochastic Petri Nets / L. Capra, M. Camilli (LECTURE NOTES IN ARTIFICIAL INTELLIGENCE). - In: Computer Performance Engineering / [a cura di] M. Gribaudo, M. Iacono, T. Phung-Duc, R. Razumchik. - [s.l] : Springer, 2020. - ISBN 9783030444105. - pp. 33-49 (( Intervento presentato al 16. convegno European Workshop on Computer Performance Engineering tenutosi a Milano nel 2019 [10.1007/978-3-030-44411-2_3].

Emulating Self-adaptive Stochastic Petri Nets

L. Capra
Primo
;
M. Camilli
Secondo
2020

Abstract

Traditional Petri nets lack specific features to conveniently describe systems with an evolving structure. A model based on the Symmetric Net formalism has been recently introduced. It is composed of an emulator reproducing the behaviour of a Place/Transition net (encoded as a marking) and a basic set of net-transformation primitives to specify evolutionary behaviour. In this paper, we discuss the adoption of the stochastic extension of Symmetric Nets for performance analysis, considering important issues related to time specification and analysis complexity. We put into place theoretical aspects by using a running example consisting in a self-healing manufacturing system.
Evolving systems; Stochastic petri nets; Symmetric nets
Settore INF/01 - Informatica
Politecnico di Milano
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
epew2019.pdf

accesso riservato

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Capra-Camilli2020_Chapter_EmulatingSelf-adaptiveStochast.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/847349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact