We present a fine-grained NER annotations scheme with 30 labels and apply it to German data. Building on the OntoNotes 5.0 NER inventory, our scheme is adapted for a corpus of transcripts of biographic interviews by adding categories for AGE and LAN(guage) and also adding label classes for various numeric and temporal expressions. Applying the scheme to the spoken data as well as a collection of teaser tweets from newspaper sites, we can confirm its generality for both domains, also achieving good inter-annotator agreement. We also show empirically how our inventory relates to the well-established 4-category NER inventory by re-annotating a subset of the GermEval 2014 NER coarse-grained dataset with our fine label inventory. Finally, we use a BERT-based system to establish some baselines for NER tagging on our two new datasets. Global results in in-domain testing are quite high on the two datasets, near what was achieved for the coarse inventory on the CoNLLL2003 data. Cross-domain testing produces much lower results due to the severe domain differences
Fine-grained Named Entity Annotations for German Biographic Interviews / J. Ruppemhofer, I. Rehbein, C. Flinz - In: Proceedings of the 12th Language Resources and Evaluation Conference / [a cura di] N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis. - [s.l] : European Language Resources Association, 2020. - ISBN 9791095546344. - pp. 4605-4614 (( Intervento presentato al 12. convegno LREC tenutosi a Marseille nel 2020.
Fine-grained Named Entity Annotations for German Biographic Interviews
C. Flinz
2020
Abstract
We present a fine-grained NER annotations scheme with 30 labels and apply it to German data. Building on the OntoNotes 5.0 NER inventory, our scheme is adapted for a corpus of transcripts of biographic interviews by adding categories for AGE and LAN(guage) and also adding label classes for various numeric and temporal expressions. Applying the scheme to the spoken data as well as a collection of teaser tweets from newspaper sites, we can confirm its generality for both domains, also achieving good inter-annotator agreement. We also show empirically how our inventory relates to the well-established 4-category NER inventory by re-annotating a subset of the GermEval 2014 NER coarse-grained dataset with our fine label inventory. Finally, we use a BERT-based system to establish some baselines for NER tagging on our two new datasets. Global results in in-domain testing are quite high on the two datasets, near what was achieved for the coarse inventory on the CoNLLL2003 data. Cross-domain testing produces much lower results due to the severe domain differencesFile | Dimensione | Formato | |
---|---|---|---|
Flinz_LREC_2020.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
386.48 kB
Formato
Adobe PDF
|
386.48 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.