Production of curli, extracellular structures important for biofilm formation, is positively regulated by OmpR, which constitutes with the EnvZ protein an osmolarity-sensing two-component regulatory system. The expression of curli is cryptic in most Escherichia coli laboratory strains such as MG1655, due to the lack of csgD expression. The csgD gene encodes a transcription activator of the curli-subunit-encoding csgBA operon. The ompR234 up-mutation can restore csgD expression, resulting in curli production and increased biofilm formation. In this report, it is shown that ompR234-dependent csgD expression, in addition to csgBA activation during stationary phase of growth, stimulates expression of the yaiC gene and negatively regulates at least two other genes, pepD and yagS. The promoter regions of these four genes share a conserved 11 bp sequence (CGGGKGAKNKA), necessary for csgBA and yaiC regulation by CsgD. While at both the csgBA and yaiC promoters the sequence is located upstream of the promoter elements, in both yagS and pepD it overlaps either the putative -10 sequence or the transcription start point, suggesting that CsgD can function as both an activator and a repressor. Adhesion experiments show that csgD-independent expression of both yagS and pepD from a multicopy plasmid negatively affects biofilm formation, which, in contrast, is stimulated by yaiC expression. Thus it is proposed that CsgD stimulates biofilm formation in E. coli by contemporary activation of adhesion positive determinants (the curli-encoding csg operons and the product of the yaiC gene) and repression of negative effectors such as yagS and pepD.

The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Eschericia coli / E. Brombacher, C. Dorel, A.J.B. Zehnder, P. Landini. - In: MICROBIOLOGY. - ISSN 1350-0872. - 149:10(2003), pp. 2847-2857. [10.1099/mic.0.26306-0]

The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Eschericia coli

P. Landini
2003

Abstract

Production of curli, extracellular structures important for biofilm formation, is positively regulated by OmpR, which constitutes with the EnvZ protein an osmolarity-sensing two-component regulatory system. The expression of curli is cryptic in most Escherichia coli laboratory strains such as MG1655, due to the lack of csgD expression. The csgD gene encodes a transcription activator of the curli-subunit-encoding csgBA operon. The ompR234 up-mutation can restore csgD expression, resulting in curli production and increased biofilm formation. In this report, it is shown that ompR234-dependent csgD expression, in addition to csgBA activation during stationary phase of growth, stimulates expression of the yaiC gene and negatively regulates at least two other genes, pepD and yagS. The promoter regions of these four genes share a conserved 11 bp sequence (CGGGKGAKNKA), necessary for csgBA and yaiC regulation by CsgD. While at both the csgBA and yaiC promoters the sequence is located upstream of the promoter elements, in both yagS and pepD it overlaps either the putative -10 sequence or the transcription start point, suggesting that CsgD can function as both an activator and a repressor. Adhesion experiments show that csgD-independent expression of both yagS and pepD from a multicopy plasmid negatively affects biofilm formation, which, in contrast, is stimulated by yaiC expression. Thus it is proposed that CsgD stimulates biofilm formation in E. coli by contemporary activation of adhesion positive determinants (the curli-encoding csg operons and the product of the yaiC gene) and repression of negative effectors such as yagS and pepD.
Salmonella-typhimurium; aggregative behavior; PEPD gene; promoter; involvemnet; strains; activation; mutations; mechanism; transport
Settore BIO/19 - Microbiologia Generale
Article (author)
File in questo prodotto:
File Dimensione Formato  
mic1492847.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 249.61 kB
Formato Adobe PDF
249.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/842614
Citazioni
  • ???jsp.display-item.citation.pmc??? 65
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 125
social impact