A reduction procedure for stochastic differential equations based on stochastic symmetries including Girsanov random transformations is proposed. In this setting, a new notion of reconstruction is given, involving the expectation values of functionals of solution to the SDE and a reconstruction theorem for general stochastic symmetries is proved. Moreover, the notable case of reduction under the closed subclass of quasi Doob transformations is presented. The theoretical results are applied to stochastic models relevant in the applications

Reduction and reconstruction of SDEs via Girsanov and quasi Doob symmetries / F.C. De Vecchi, P. Morando, S. Ugolini. - In: JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL. - ISSN 1751-8113. - 54:18(2021), pp. 185203.1-185203.33. [10.1088/1751-8121/abef7f]

Reduction and reconstruction of SDEs via Girsanov and quasi Doob symmetries

P. Morando;S. Ugolini
2021

Abstract

A reduction procedure for stochastic differential equations based on stochastic symmetries including Girsanov random transformations is proposed. In this setting, a new notion of reconstruction is given, involving the expectation values of functionals of solution to the SDE and a reconstruction theorem for general stochastic symmetries is proved. Moreover, the notable case of reduction under the closed subclass of quasi Doob transformations is presented. The theoretical results are applied to stochastic models relevant in the applications
Lie’s symmetry analysis, stochastic differential equations, Girsanov transform, Doob’s h-transform, integration by quadratures
Settore MAT/07 - Fisica Matematica
Settore MAT/06 - Probabilita' e Statistica Matematica
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
Doob_reduction_DeVecchi_Morando_Ugolini_rev2.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 412.45 kB
Formato Adobe PDF
412.45 kB Adobe PDF Visualizza/Apri
De_Vecchi_2021_J._Phys._A__Math._Theor._54_185203.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/839713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 2
social impact