In agricultural soils, nitrate (NO3−) is the major nitrogen (N) nutrient for plants, but few studies have analyzed molecular and biochemical responses involved in its acquisition by grapevine roots. In viticulture, considering grafting, NO3− acquisition is strictly dependent on rootstock. To improve the knowledge about N nutrition in grapevine, this study analyzed biochemical and proteomic changes induced by, NO3− availability, in a hydroponic system, in the roots of M4, a recently selected grapevine rootstock. The evaluation of biochemical parameters, such as NO3−, sugar and amino acid contents in roots, and the abundance of nitrate reductase, allowed us to define the time course of the metabolic adaptations to NO3− supply. On the basis of these results, the proteomic analysis was conducted by comparing the root profiles in N-starved plants and after 30 h of NO3− resupply. The analysis quantified 461 proteins, 26% of which differed in abundance between conditions. Overall, this approach highlighted, together with an increased N assimilatory metabolism, a concomitant rise in the oxidative pentose phosphate pathway and glycolysis, needed to fulfill the redox power and carbon skeleton demands, respectively. Moreover, a wide modulation of protein and amino acid metabolisms and changes of proteins involved in root development were observed. Finally, some results open new questions about the importance of redox-related post-translational modifications and of NO3− availability in modulating the dialog between root and rhizosphere.

Biochemical and proteomic changes in the roots of M4 grapevine rootstock in response to nitrate availability / B. Prinsi, C. Muratore, L. Espen. - In: PLANTS. - ISSN 2223-7747. - 10:4(2021 Apr 17), pp. 792.1-792.17. [10.3390/plants10040792]

Biochemical and proteomic changes in the roots of M4 grapevine rootstock in response to nitrate availability

B. Prinsi
Primo
;
C. Muratore
Secondo
;
L. Espen
Ultimo
2021-04-17

Abstract

In agricultural soils, nitrate (NO3−) is the major nitrogen (N) nutrient for plants, but few studies have analyzed molecular and biochemical responses involved in its acquisition by grapevine roots. In viticulture, considering grafting, NO3− acquisition is strictly dependent on rootstock. To improve the knowledge about N nutrition in grapevine, this study analyzed biochemical and proteomic changes induced by, NO3− availability, in a hydroponic system, in the roots of M4, a recently selected grapevine rootstock. The evaluation of biochemical parameters, such as NO3−, sugar and amino acid contents in roots, and the abundance of nitrate reductase, allowed us to define the time course of the metabolic adaptations to NO3− supply. On the basis of these results, the proteomic analysis was conducted by comparing the root profiles in N-starved plants and after 30 h of NO3− resupply. The analysis quantified 461 proteins, 26% of which differed in abundance between conditions. Overall, this approach highlighted, together with an increased N assimilatory metabolism, a concomitant rise in the oxidative pentose phosphate pathway and glycolysis, needed to fulfill the redox power and carbon skeleton demands, respectively. Moreover, a wide modulation of protein and amino acid metabolisms and changes of proteins involved in root development were observed. Finally, some results open new questions about the importance of redox-related post-translational modifications and of NO3− availability in modulating the dialog between root and rhizosphere.
vitis; mineral plant nutrition; perennial crop; nitrate; root growth
Settore AGR/13 - Chimica Agraria
Article (author)
File in questo prodotto:
File Dimensione Formato  
plants-10-00792-v2.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/839662
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact