This contribution sheds light on the role of infinite idealization in structural analysis, by exploring how infinite elements and finite element methods are combined in civil engineering models. This combination, I claim, should be read in terms of a ‘complementarity function’ through which the representational ideal of completeness is reached in engineering model-building. Taking a cue from Weisberg’s definition of multiple-model idealization, I highlight how infinite idealizations are primarily meant to contribute to the prediction of structural behavior in Multiphysics approaches.

Combining finite and infinite elements : Why do we use infinite idealizations in engineering? / S. De Bianchi. - In: SYNTHESE. - ISSN 0039-7857. - 196:5(2019), pp. 1733-1748. [10.1007/s11229-018-1864-y]

Combining finite and infinite elements : Why do we use infinite idealizations in engineering?

S. De Bianchi
2019

Abstract

This contribution sheds light on the role of infinite idealization in structural analysis, by exploring how infinite elements and finite element methods are combined in civil engineering models. This combination, I claim, should be read in terms of a ‘complementarity function’ through which the representational ideal of completeness is reached in engineering model-building. Taking a cue from Weisberg’s definition of multiple-model idealization, I highlight how infinite idealizations are primarily meant to contribute to the prediction of structural behavior in Multiphysics approaches.
Engineering; Finite element method; Infinite element method; Infinite idealization; Multiple-model idealization
Settore M-FIL/02 - Logica e Filosofia della Scienza
Dipartimenti di Eccellenza 2018-2022 - Dipartimento di FILOSOFIA
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bianchi2019_Article_CombiningFiniteAndInfiniteElem.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 317.32 kB
Formato Adobe PDF
317.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2434/838604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact