We address the generation, propagation, and application of multipartite continuous variable entanglement in a noisy environment. In particular, we focus our attention on the multimode entangled states achievable by second-order nonlinear crystals-i.e., coherent states of the SU(m,1) group-which provide a generalization of the twin-beam state of a bipartite system. The full inseparability in the ideal case is shown, whereas thresholds for separability are given for the tripartite case in the presence of noise. We find that entanglement of tripartite states is robust against thermal noise, both in the generation process and during propagation. We then consider coherent states of SU(m,1) as a resource for multipartite distribution of quantum information and analyze a specific protocol for telecloning, proving its optimality in the case of symmetric cloning of pure Gaussian states. We show that the proposed protocol also provides the first example of a completely asymmetric 1 rarr m telecloning and derive explicitly the optimal relation among the different fidelities of the m clones. The effect of noise in the various stages of the protocol is taken into account, and the fidelities of the clones are analytically obtained as a function of the noise parameters. In turn, this permits the optimization of the telecloning protocol, including its adaptive modifications to the noisy environment. In the optimized scheme the clones' fidelity remains maximal even in the presence of losses (in the absence of thermal noise), for propagation times that diverge as the number of modes increases. In the optimization procedure the prominent role played by the location of the entanglement source is analyzed in details. Our results indicate that, when only losses are present, telecloning is a more effective way to distribute quantum information than direct transmission followed by local cloning.
Multimode entanglement and telecloning in a noisy environment / Alessandro Ferraro, Matteo G. A. Paris. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - 72:3(2005), pp. 032312.032312-1-032312.032312-12.
Multimode entanglement and telecloning in a noisy environment
Alessandro Ferraro;Matteo G. A. Paris
2005
Abstract
We address the generation, propagation, and application of multipartite continuous variable entanglement in a noisy environment. In particular, we focus our attention on the multimode entangled states achievable by second-order nonlinear crystals-i.e., coherent states of the SU(m,1) group-which provide a generalization of the twin-beam state of a bipartite system. The full inseparability in the ideal case is shown, whereas thresholds for separability are given for the tripartite case in the presence of noise. We find that entanglement of tripartite states is robust against thermal noise, both in the generation process and during propagation. We then consider coherent states of SU(m,1) as a resource for multipartite distribution of quantum information and analyze a specific protocol for telecloning, proving its optimality in the case of symmetric cloning of pure Gaussian states. We show that the proposed protocol also provides the first example of a completely asymmetric 1 rarr m telecloning and derive explicitly the optimal relation among the different fidelities of the m clones. The effect of noise in the various stages of the protocol is taken into account, and the fidelities of the clones are analytically obtained as a function of the noise parameters. In turn, this permits the optimization of the telecloning protocol, including its adaptive modifications to the noisy environment. In the optimized scheme the clones' fidelity remains maximal even in the presence of losses (in the absence of thermal noise), for propagation times that diverge as the number of modes increases. In the optimization procedure the prominent role played by the location of the entanglement source is analyzed in details. Our results indicate that, when only losses are present, telecloning is a more effective way to distribute quantum information than direct transmission followed by local cloning.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.