The number of immigrants moving to and settling in Europe has increased over the past decade, making migration one of the most topical and pressing issues in European politics. It is without a doubt that immigration has multiple impacts, in terms of economy, society and culture, on the European Union. It is fundamental to policy-makers to correctly evaluate people's attitudes towards immigration when designing integration policies. Of critical interest is to properly discriminate between subjects who are favourable towards immigration from those who are against it. Public opinions on migration are typically coded as binary responses in surveys. However, traditional methods, such as the standard logistic regression, may suffer from computational issues and are often not able to accurately model survey information. In this paper we propose an efficient Bayesian approach for modelling binary response data based on the generalized logistic regression. We show how the proposed approach provides an increased flexibility compared to traditional methods, due to its ability to capture heavy and light tails. The power of our methodology is tested through simulation studies and is illustrated using European Social Survey data on immigration collected in different European countries in 2016–2017.

Bayesian analysis of immigration in Europe with generalized logistic regression / L. Dalla Valle, F. Leisen, L. Rossini, W. Zhu. - In: JOURNAL OF APPLIED STATISTICS. - ISSN 0266-4763. - 47:3(2020), pp. 424-438.

Bayesian analysis of immigration in Europe with generalized logistic regression

L. Rossini;
2020

Abstract

The number of immigrants moving to and settling in Europe has increased over the past decade, making migration one of the most topical and pressing issues in European politics. It is without a doubt that immigration has multiple impacts, in terms of economy, society and culture, on the European Union. It is fundamental to policy-makers to correctly evaluate people's attitudes towards immigration when designing integration policies. Of critical interest is to properly discriminate between subjects who are favourable towards immigration from those who are against it. Public opinions on migration are typically coded as binary responses in surveys. However, traditional methods, such as the standard logistic regression, may suffer from computational issues and are often not able to accurately model survey information. In this paper we propose an efficient Bayesian approach for modelling binary response data based on the generalized logistic regression. We show how the proposed approach provides an increased flexibility compared to traditional methods, due to its ability to capture heavy and light tails. The power of our methodology is tested through simulation studies and is illustrated using European Social Survey data on immigration collected in different European countries in 2016–2017.
Bayesian inference; empirical likelihood; generalized logistic regression; immigration
Settore SECS-S/01 - Statistica
Article (author)
File in questo prodotto:
File Dimensione Formato  
Bayesian analysis of immigration in Europe with generalized logistic regression.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/833753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact