Theoretical vibrational spectroscopy provides a practical way to study both isolated (gas-phase) and solvated systems. When dealing with sizeable molecular systems, the main challenge is represented by the large number of degrees of freedom to be considered. Furthermore, an accurate spectroscopical investigation requires a quantum mechanical treatment, which makes the task even harder to achieve. This key issue involves both the description of the potential energy surface and the molecular dynamics. Semiclassical dynamics allows one to calculate accurate vibrational spectra with inclusion of quantum effects like zero-point energies, overtones, and quantum resonances starting from short-time classical molecular dynamics runs. In this talk I will briefly introduce the divide-and-conquer semiclassical initial value representation technique (DC SCIVR), and then show a batch of applications involving biomolecules and water-based supramolecular systems. I will start by demonstrating the spectroscopic accuracy of the technique on isolated (gas-phase) biomolecules (glycine and thymidine). Then, I will describe an investigation of water clusters aimed at revealing how many water molecules are needed to have the central monomer featuring the spectroscopic properties of bulk water. Finally, some preliminary results of a study of solvated thymidine will be presented.

How many water molecules are needed to solvate one? / R. Conte, A. Rognoni, M. Ceotto. ((Intervento presentato al convegno VISPEC tenutosi a online nel 2021.

How many water molecules are needed to solvate one?

R. Conte
Primo
;
A. Rognoni
Secondo
;
M. Ceotto
Ultimo
2021

Abstract

Theoretical vibrational spectroscopy provides a practical way to study both isolated (gas-phase) and solvated systems. When dealing with sizeable molecular systems, the main challenge is represented by the large number of degrees of freedom to be considered. Furthermore, an accurate spectroscopical investigation requires a quantum mechanical treatment, which makes the task even harder to achieve. This key issue involves both the description of the potential energy surface and the molecular dynamics. Semiclassical dynamics allows one to calculate accurate vibrational spectra with inclusion of quantum effects like zero-point energies, overtones, and quantum resonances starting from short-time classical molecular dynamics runs. In this talk I will briefly introduce the divide-and-conquer semiclassical initial value representation technique (DC SCIVR), and then show a batch of applications involving biomolecules and water-based supramolecular systems. I will start by demonstrating the spectroscopic accuracy of the technique on isolated (gas-phase) biomolecules (glycine and thymidine). Then, I will describe an investigation of water clusters aimed at revealing how many water molecules are needed to have the central monomer featuring the spectroscopic properties of bulk water. Finally, some preliminary results of a study of solvated thymidine will be presented.
Settore CHIM/02 - Chimica Fisica
Politecnico di Milano
How many water molecules are needed to solvate one? / R. Conte, A. Rognoni, M. Ceotto. ((Intervento presentato al convegno VISPEC tenutosi a online nel 2021.
Conference Object
File in questo prodotto:
File Dimensione Formato  
CONTE_VISPEC.pdf

accesso aperto

Descrizione: Abstract Talk @ VISPEC 2021
Tipologia: Altro
Dimensione 923 kB
Formato Adobe PDF
923 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/829876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact