Objectives: Hysteresis of the respiratory system pressure-volume curve is related to alveolar surface forces, lung stress relaxation, and tidal reexpansion/collapse. Hysteresis has been suggested as a means of assessing lung recruitment. The objective of this study was to determine the relationship between hysteresis, mechanical characteristics of the respiratory system, and lung recruitment assessed by a CT scan in mechanically ventilated acute respiratory distress syndrome patients. Design: Prospective observational study. Setting: General ICU of a university hospital. Patients: Twenty-five consecutive sedated and paralyzed patients with acute respiratory distress syndrome (age 64 ± 15 yr, body mass index 26 ± 6 kg/m2, Pao2/Fio2147 ± 42, and positive end-expiratory pressure 9.3 ± 1.4 cm H2O) were enrolled. Interventions: A low-flow inflation and deflation pressure-volume curve (5-45 cm H2O) and a sustained inflation recruitment maneuver (45 cm H2O for 30 s) were performed. A lung CT scan was performed during breath-holding pressure at 5 cm H2O and during the recruitment maneuver at 45 cm H2O. Measurements and Main Results: Lung recruitment was computed as the difference in noninflated tissue and in gas volume measured at 5 and at 45 cm H2O. Hysteresis was calculated as the ratio of the area enclosed by the pressure-volume curve and expressed as the hysteresis ratio. Hysteresis was correlated with respiratory system compliance computed at 5 cm H2O and the lung gas volume entering the lung during inflation of the pressure-volume curve (R2= 0.749, p < 0.001 and R2= 0.851, p < 0.001). The hysteresis ratio was related to both lung tissue and gas recruitment (R2= 0.266, p = 0.008, R2= 0.357, p = 0.002, respectively). Receiver operating characteristic analysis showed that the optimal cutoff value to predict lung tissue recruitment for the hysteresis ratio was 28% (area under the receiver operating characteristic curve, 0.80; 95% CI, 0.62-0.98), with sensitivity and specificity of 0.75 and 0.77, respectively. Conclusions: Hysteresis of the respiratory system computed by low-flow pressure-volume curve is related to the anatomical lung characteristics and has an acceptable accuracy to predict lung recruitment.
Hysteresis and lung recruitment in acute respiratory distress syndrome patients : A CT scan study / D. Chiumello, J.-. Arnal, M. Umbrello, A. Cammaroto, P. Formenti, G. Mistraletti, L. Bolgiaghi, M. Gotti, D. Novotni, S. Reidt, S. Froio, S. Coppola. - In: CRITICAL CARE MEDICINE. - ISSN 0090-3493. - 48:10(2020 Oct), pp. 1494-1502. [10.1097/CCM.0000000000004518]
Hysteresis and lung recruitment in acute respiratory distress syndrome patients : A CT scan study
D. Chiumello
;M. Umbrello;A. Cammaroto;P. Formenti;G. Mistraletti;L. Bolgiaghi;M. Gotti;S. Froio;S. Coppola
2020
Abstract
Objectives: Hysteresis of the respiratory system pressure-volume curve is related to alveolar surface forces, lung stress relaxation, and tidal reexpansion/collapse. Hysteresis has been suggested as a means of assessing lung recruitment. The objective of this study was to determine the relationship between hysteresis, mechanical characteristics of the respiratory system, and lung recruitment assessed by a CT scan in mechanically ventilated acute respiratory distress syndrome patients. Design: Prospective observational study. Setting: General ICU of a university hospital. Patients: Twenty-five consecutive sedated and paralyzed patients with acute respiratory distress syndrome (age 64 ± 15 yr, body mass index 26 ± 6 kg/m2, Pao2/Fio2147 ± 42, and positive end-expiratory pressure 9.3 ± 1.4 cm H2O) were enrolled. Interventions: A low-flow inflation and deflation pressure-volume curve (5-45 cm H2O) and a sustained inflation recruitment maneuver (45 cm H2O for 30 s) were performed. A lung CT scan was performed during breath-holding pressure at 5 cm H2O and during the recruitment maneuver at 45 cm H2O. Measurements and Main Results: Lung recruitment was computed as the difference in noninflated tissue and in gas volume measured at 5 and at 45 cm H2O. Hysteresis was calculated as the ratio of the area enclosed by the pressure-volume curve and expressed as the hysteresis ratio. Hysteresis was correlated with respiratory system compliance computed at 5 cm H2O and the lung gas volume entering the lung during inflation of the pressure-volume curve (R2= 0.749, p < 0.001 and R2= 0.851, p < 0.001). The hysteresis ratio was related to both lung tissue and gas recruitment (R2= 0.266, p = 0.008, R2= 0.357, p = 0.002, respectively). Receiver operating characteristic analysis showed that the optimal cutoff value to predict lung tissue recruitment for the hysteresis ratio was 28% (area under the receiver operating characteristic curve, 0.80; 95% CI, 0.62-0.98), with sensitivity and specificity of 0.75 and 0.77, respectively. Conclusions: Hysteresis of the respiratory system computed by low-flow pressure-volume curve is related to the anatomical lung characteristics and has an acceptable accuracy to predict lung recruitment.File | Dimensione | Formato | |
---|---|---|---|
Hysteresis and Lung Recruitment in Acute Respiratory Distress Syndrome Patients_A CT Scan Study_.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
678.7 kB
Formato
Adobe PDF
|
678.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.