Relative narrow bandwidth-high energy radiation can be produced through Thomson scattering, where highly relativistic electrons collide with a laser pulse. The bandwidth of such a source is determined, among others factors, by the bandwidth of the laser pulse and the energy spread of the electrons. Here we investigate how the bandwidth of such a source can be minimized, with a particular emphasis on electron bunches with a correlated energy spread of several percent, that are typical for plasma based accelerator schemes. We show that by introducing a chirp on the laser pulse it is possible to compensate the broadening effect due to the energy spread of the electrons, and obtain the same bandwidth as a quasi-monochromatic plane wave laser pulse colliding with a monoenergetic electron bunch. Ultimately, the bandwidth of a Thomson source is limited by the acceptance angle and the initial transverse momentum of electrons (emittance).
Decreasing the bandwidth of linear and nonlinear Thomson scattering radiation for electron bunches with a finite energy spread / M. Ruijter, V. Petrillo, M. Zepf. - In: PHYSICAL REVIEW. ACCELERATORS AND BEAMS. - ISSN 2469-9888. - 24:2(2021 Feb 18). [10.1103/PhysRevAccelBeams.24.020702]
Decreasing the bandwidth of linear and nonlinear Thomson scattering radiation for electron bunches with a finite energy spread
V. PetrilloSecondo
;
2021
Abstract
Relative narrow bandwidth-high energy radiation can be produced through Thomson scattering, where highly relativistic electrons collide with a laser pulse. The bandwidth of such a source is determined, among others factors, by the bandwidth of the laser pulse and the energy spread of the electrons. Here we investigate how the bandwidth of such a source can be minimized, with a particular emphasis on electron bunches with a correlated energy spread of several percent, that are typical for plasma based accelerator schemes. We show that by introducing a chirp on the laser pulse it is possible to compensate the broadening effect due to the energy spread of the electrons, and obtain the same bandwidth as a quasi-monochromatic plane wave laser pulse colliding with a monoenergetic electron bunch. Ultimately, the bandwidth of a Thomson source is limited by the acceptance angle and the initial transverse momentum of electrons (emittance).File | Dimensione | Formato | |
---|---|---|---|
PhysRevAccelBeams.24.020702.pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.