The interest of the scientific community for nanotechnologies and nanomaterials was born in 1959, on the occasion of the annual meeting of the American Physical Society, when a new approach began with which to consider and manipulate matter on a micro- and nano-metric scale. The subsequent increase in the use of nanomaterials in scientific research is due to their peculiar characteristics: increased surface / volume ratio, new optical and physical properties, high active surface, increased or modified material transport, increased selectivity. All these features make nanomaterials extremely suitable for a wide range of applications, from energy, to catalysis and sensors. In recent decades, apart from the application of nanomaterials characterized by a single component, the use of “hybrid” nanomaterials, composed of two or more components in “intimate” contact, is also rapidly growing. This is connected to the fact that, since in a hybrid material the establishment of synergistic properties is confined to the contact region between the different components, in nanomaterials, given the small size, these effects can become a dominant factor of the entire structure. The result is precisely the establishment of new and unexpected properties (often desired and interesting) which are not the simple sum of the ownership of individual contributions. Given all this, hybrid materials are excellent candidates for applications in the most varied fields, including electroanalysis, which can greatly benefit from these systems. In this context, this work aims to present the construction of devices based on hybrid metal-semiconductor nanomaterials (based on silver or gold nanoparticles and titanium dioxide). In these systems, the presence of metal nanoparticles is exploited for the electroanalytical determination of analytes of medical / diagnostic or environmental interest, while the presence of TiO2 is essential for overcoming the problems of fouling and passivation of the electrode surface following the determination of the molecule under examination. . The possibility of renewing the electrode surface simply by irradiating the device with ultraviolet light, allows you to use the devices remotely for a long time, without their continuous recovery. In the case of the Ag-TiO2 system, an “intimate contact” interphase between the silver nanoparticles and titanium dioxide was also found, which makes the hybrid a real new material, with different characteristics and with interesting applications compared to its precursors.

L’interesse della comunità scientifica per le nanotecnologie ed i nanomateriali nasce nel 1959, in occasione della riunione annuale della American Physical Society, quando ebbe inizio un nuovo approccio con cui considerare e manipolare la materia su scala micro- e nano-metrica. Il successivo aumento dell’utilizzo di nanomateriali nella ricerca scientifica è dovuto alle loro caratteristiche peculiari: aumentato rapporto superficie/volume, nuove proprietà ottiche e fisiche, elevata superficie attiva, trasporto di materia incrementato o modificato, selettività aumentata. Tutte queste caratteristiche rendono i nanomateriali estremamente adatti per un vasto spettro di applicazioni, dall’energetica, alla catalisi ed alla sensoristica. Negli ultimi decenni, a parte l’applicazione di nanomateriali caratterizzati da un solo componente, sta rapidamente crescendo anche l’utilizzo di nanomateriali “ibridi”, composti da due o più componenti in “intimo” contatto. Ciò è connesso al fatto che, poiché in un materiale ibrido l’instaurarsi di proprietà sinergiche è confinato alla regione di contatto tra i differenti componenti, nei nanomateriali, date le piccole dimensioni, questi effetti possono diventare un fattore dominante dell’intera struttura. Il risultato è appunto l’instaurazione di proprietà nuove e inaspettate (spesso volute ed interessanti) che non sono la semplice somma della proprietà dei contributi individuali. Considerato tutto ciò, i materiali ibridi sono degli ottimi candidati per applicazioni nei campi più svariati, tra i quali l’elettroanalisi, che può trarre grande vantaggio da questi sistemi. In questo contesto, questo lavoro vuole presentare la costruzione di dispositivi basati su nanomateriali ibridi metallo-semiconduttore (a base di nanoparticelle d’argento o d’oro e biossido di titanio). In questi sistemi la presenza delle nanoparticelle metalliche viene sfruttata per la determinazione elettroanalitica di analiti di interesse medico/diagnostico o ambientale, mentre la presenza del TiO2 risulta essenziale per superare i problemi di sporcamento e passivazione della superficie elettrodica a seguito della determinazione della molecola in esame. La possibilità di rinnovare la superficie elettrodica semplicemente irradiando il dispositivo con luce ultravioletta, permette di utilizzare i dispositivi in remoto per lungo tempo, senza il loro continuo rispristino. Nel caso del sistema Ag-TiO2, si è inoltre riscontrato l’instaurarsi di una interfase di “intimo contatto” tra le nanoparticelle d’argento ed il biossido di titanio, che rende l’ibrido un vero e proprio nuovo materiale, con caratteristiche differenti e con applicazioni interessanti rispetto ai suoi precursori.

Quando l’insieme è meglio della somma: nanomateriali ibridi argento-titaniae ed oro-titania per sensori elettroanalitici / L. Falciola, V. Pifferi, A. Testolin. - In: RENDICONTI. CLASSE DI SCIENZE MATEMATICHE E NATURALI. - ISSN 1974-6989. - 153:(2019), pp. 191-206. [10.4081/scie.2019.696]

Quando l’insieme è meglio della somma: nanomateriali ibridi argento-titaniae ed oro-titania per sensori elettroanalitici

L. Falciola
Primo
;
V. Pifferi
Secondo
;
A. Testolin
Ultimo
2019

Abstract

The interest of the scientific community for nanotechnologies and nanomaterials was born in 1959, on the occasion of the annual meeting of the American Physical Society, when a new approach began with which to consider and manipulate matter on a micro- and nano-metric scale. The subsequent increase in the use of nanomaterials in scientific research is due to their peculiar characteristics: increased surface / volume ratio, new optical and physical properties, high active surface, increased or modified material transport, increased selectivity. All these features make nanomaterials extremely suitable for a wide range of applications, from energy, to catalysis and sensors. In recent decades, apart from the application of nanomaterials characterized by a single component, the use of “hybrid” nanomaterials, composed of two or more components in “intimate” contact, is also rapidly growing. This is connected to the fact that, since in a hybrid material the establishment of synergistic properties is confined to the contact region between the different components, in nanomaterials, given the small size, these effects can become a dominant factor of the entire structure. The result is precisely the establishment of new and unexpected properties (often desired and interesting) which are not the simple sum of the ownership of individual contributions. Given all this, hybrid materials are excellent candidates for applications in the most varied fields, including electroanalysis, which can greatly benefit from these systems. In this context, this work aims to present the construction of devices based on hybrid metal-semiconductor nanomaterials (based on silver or gold nanoparticles and titanium dioxide). In these systems, the presence of metal nanoparticles is exploited for the electroanalytical determination of analytes of medical / diagnostic or environmental interest, while the presence of TiO2 is essential for overcoming the problems of fouling and passivation of the electrode surface following the determination of the molecule under examination. . The possibility of renewing the electrode surface simply by irradiating the device with ultraviolet light, allows you to use the devices remotely for a long time, without their continuous recovery. In the case of the Ag-TiO2 system, an “intimate contact” interphase between the silver nanoparticles and titanium dioxide was also found, which makes the hybrid a real new material, with different characteristics and with interesting applications compared to its precursors.
L’interesse della comunità scientifica per le nanotecnologie ed i nanomateriali nasce nel 1959, in occasione della riunione annuale della American Physical Society, quando ebbe inizio un nuovo approccio con cui considerare e manipolare la materia su scala micro- e nano-metrica. Il successivo aumento dell’utilizzo di nanomateriali nella ricerca scientifica è dovuto alle loro caratteristiche peculiari: aumentato rapporto superficie/volume, nuove proprietà ottiche e fisiche, elevata superficie attiva, trasporto di materia incrementato o modificato, selettività aumentata. Tutte queste caratteristiche rendono i nanomateriali estremamente adatti per un vasto spettro di applicazioni, dall’energetica, alla catalisi ed alla sensoristica. Negli ultimi decenni, a parte l’applicazione di nanomateriali caratterizzati da un solo componente, sta rapidamente crescendo anche l’utilizzo di nanomateriali “ibridi”, composti da due o più componenti in “intimo” contatto. Ciò è connesso al fatto che, poiché in un materiale ibrido l’instaurarsi di proprietà sinergiche è confinato alla regione di contatto tra i differenti componenti, nei nanomateriali, date le piccole dimensioni, questi effetti possono diventare un fattore dominante dell’intera struttura. Il risultato è appunto l’instaurazione di proprietà nuove e inaspettate (spesso volute ed interessanti) che non sono la semplice somma della proprietà dei contributi individuali. Considerato tutto ciò, i materiali ibridi sono degli ottimi candidati per applicazioni nei campi più svariati, tra i quali l’elettroanalisi, che può trarre grande vantaggio da questi sistemi. In questo contesto, questo lavoro vuole presentare la costruzione di dispositivi basati su nanomateriali ibridi metallo-semiconduttore (a base di nanoparticelle d’argento o d’oro e biossido di titanio). In questi sistemi la presenza delle nanoparticelle metalliche viene sfruttata per la determinazione elettroanalitica di analiti di interesse medico/diagnostico o ambientale, mentre la presenza del TiO2 risulta essenziale per superare i problemi di sporcamento e passivazione della superficie elettrodica a seguito della determinazione della molecola in esame. La possibilità di rinnovare la superficie elettrodica semplicemente irradiando il dispositivo con luce ultravioletta, permette di utilizzare i dispositivi in remoto per lungo tempo, senza il loro continuo rispristino. Nel caso del sistema Ag-TiO2, si è inoltre riscontrato l’instaurarsi di una interfase di “intimo contatto” tra le nanoparticelle d’argento ed il biossido di titanio, che rende l’ibrido un vero e proprio nuovo materiale, con caratteristiche differenti e con applicazioni interessanti rispetto ai suoi precursori.
Settore CHIM/01 - Chimica Analitica
Settore CHIM/02 - Chimica Fisica
2019
28-set-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
IstitutoLombardoPROOF.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 616.86 kB
Formato Adobe PDF
616.86 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/826899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact