This paper presents details on a new experimental apparatus implementing the hot electron nanoscopy (HENs) technique introduced for advanced spectroscopies on structure and chemistry in few molecules and interface problems. A detailed description of the architecture used for the laser excitation of surface plasmons at an atomic force microscope (AFM) tip is provided. The photogenerated current from the tip to the sample is detected during the AFM scan. The technique is applied to innovative semiconductors for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details of local complexity in MoS2 and polycrystalline structure of SnO at nanometric scale otherwise undetected. The technique set in this paper is promising for future studies in nanojunctions and innovative multilayered materials, with new insight on interfaces.

Experimental Route to Scanning Probe Hot-Electron Nanoscopy (HENs) Applied to 2D Material / A. Giugni, B. Torre, M. Allione, G. Das, Z. Wang, X. He, H.N. Alshareef, E. Di Fabrizio. - In: ADVANCED OPTICAL MATERIALS. - ISSN 2195-1071. - 5:15(2017 Aug 02). [10.1002/adom.201700195]

Experimental Route to Scanning Probe Hot-Electron Nanoscopy (HENs) Applied to 2D Material

A. Giugni
Primo
;
2017

Abstract

This paper presents details on a new experimental apparatus implementing the hot electron nanoscopy (HENs) technique introduced for advanced spectroscopies on structure and chemistry in few molecules and interface problems. A detailed description of the architecture used for the laser excitation of surface plasmons at an atomic force microscope (AFM) tip is provided. The photogenerated current from the tip to the sample is detected during the AFM scan. The technique is applied to innovative semiconductors for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details of local complexity in MoS2 and polycrystalline structure of SnO at nanometric scale otherwise undetected. The technique set in this paper is promising for future studies in nanojunctions and innovative multilayered materials, with new insight on interfaces.
hot-electrons nanoscopy; MoS; 2; –SnO vdW heterojunction; nanoscale characterization; surface plasmon polaritons
Settore FIS/03 - Fisica della Materia
8-lug-2017
Article (author)
File in questo prodotto:
File Dimensione Formato  
2017 - Giugni_et_al-Advanced_Optical_Materials.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 4.27 MB
Formato Adobe PDF
4.27 MB Adobe PDF Visualizza/Apri
2017 - Giugni_et_al-Advanced_Optical_Materials.sup-1.pdf

accesso aperto

Descrizione: supplementary
Tipologia: Altro
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri
2017 - Giugni_et_al-Advanced_Optical_Materials - COVER.pdf

accesso aperto

Descrizione: cover
Tipologia: Publisher's version/PDF
Dimensione 5.33 MB
Formato Adobe PDF
5.33 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/826104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact