High mountain environments and especially proglacial systems, which are areas defined by subtracting modern glacier outlines from Little Ice Age (LIA) limits, are among the most dynamic geomorphic contexts on Earth. They are extremely sensitive to ongoing climate change and its consequences are especially intense – yet relatively poorly investigated – at middle-low latitudes, as in the case of the circum-Mediterranean mountainous contexts. This area (excluding the Alps) encompasses recently deglaciated ground from the borders of the Mediterranean Sea and comprises more than hundred ice bodies dramatically receding since their LIA extension. Most of these glaciers are completely disappeared leaving extensive proglacial areas, which differs from those described in the Alps for the timing and types of ongoing processes. Here, we present and discuss the unique characteristics of such dynamic proglacial contexts, focusing on recently deglaciated high mountain areas of Southeast Turkey that are affected by fast geomorphological evolution tuned by their specific climatic and geological settings. We compare two areas differing for climatic, structural, and lithological settings: i) the Mount Ararat/Ağrı Dağı (5137 m a.s.l.), a stratovolcano, and ii) the Cilo mountain range (up to 4116 m a.s.l.), characterized by a limestone bedrock. Since the LIA, the two areas underwent different trajectories of evolution and different rates of geomorphic processes. High-resolution satellite data from Pleiades and SPOT 6 platforms permit to investigate the overprint of specific local factors (volcanism, tectonic, and topography) on climate-driven surface evolution explains the specific evolution of each proglacial area.

Evolution of recently deglaciated high mountain landforms in the Eastern Anatolia / R.S. Azzoni, I.M. Bollati, M. Pelfini, M. Akif Sarıkaya, A. Zerboni. ((Intervento presentato al convegno EGU General Assembly tenutosi a online nel 2021.

Evolution of recently deglaciated high mountain landforms in the Eastern Anatolia

R.S. Azzoni
Primo
;
I.M. Bollati;M. Pelfini;A. Zerboni
Ultimo
2021

Abstract

High mountain environments and especially proglacial systems, which are areas defined by subtracting modern glacier outlines from Little Ice Age (LIA) limits, are among the most dynamic geomorphic contexts on Earth. They are extremely sensitive to ongoing climate change and its consequences are especially intense – yet relatively poorly investigated – at middle-low latitudes, as in the case of the circum-Mediterranean mountainous contexts. This area (excluding the Alps) encompasses recently deglaciated ground from the borders of the Mediterranean Sea and comprises more than hundred ice bodies dramatically receding since their LIA extension. Most of these glaciers are completely disappeared leaving extensive proglacial areas, which differs from those described in the Alps for the timing and types of ongoing processes. Here, we present and discuss the unique characteristics of such dynamic proglacial contexts, focusing on recently deglaciated high mountain areas of Southeast Turkey that are affected by fast geomorphological evolution tuned by their specific climatic and geological settings. We compare two areas differing for climatic, structural, and lithological settings: i) the Mount Ararat/Ağrı Dağı (5137 m a.s.l.), a stratovolcano, and ii) the Cilo mountain range (up to 4116 m a.s.l.), characterized by a limestone bedrock. Since the LIA, the two areas underwent different trajectories of evolution and different rates of geomorphic processes. High-resolution satellite data from Pleiades and SPOT 6 platforms permit to investigate the overprint of specific local factors (volcanism, tectonic, and topography) on climate-driven surface evolution explains the specific evolution of each proglacial area.
apr-2021
Settore GEO/04 - Geografia Fisica e Geomorfologia
European Geosciences Union
Evolution of recently deglaciated high mountain landforms in the Eastern Anatolia / R.S. Azzoni, I.M. Bollati, M. Pelfini, M. Akif Sarıkaya, A. Zerboni. ((Intervento presentato al convegno EGU General Assembly tenutosi a online nel 2021.
Conference Object
File in questo prodotto:
File Dimensione Formato  
21_AzzoniEtAl_proglacialMediterranean_EGU2021_Abs.pdf

accesso aperto

Tipologia: Altro
Dimensione 275.87 kB
Formato Adobe PDF
275.87 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/822081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact