We present a series of results focused on the decay in time of solutions of classical and anomalous diffusive equations in a bounded domain. The size of the solution is measured in a Lebesgue space, and the setting comprises time-fractional and space-fractional equations and operators of nonlinear type. We also discuss how fractional operators may affect long-time asymptotics.

Decay Estimates in Time for Classical and Anomalous Diffusion / E. Affili, S. Dipierro, E. Valdinoci (MATRIX BOOK SERIES). - In: 2018 MATRIX Annals / [a cura di] D.R. Wood, J. de Gier, C.E. Praeger, T. Tao. - Prima edizione. - [s.l] : Springer, 2020. - ISBN 9783030382292. - pp. 167-182 (( convegno Recent Trends on Nonlinear PDEs of Elliptic and Parabolic Type tenutosi a MATRIX, Ballarat nel 2018 [10.1007/978-3-030-38230-8_12].

Decay Estimates in Time for Classical and Anomalous Diffusion

E. Affili;S. Dipierro;E. Valdinoci
2020

Abstract

We present a series of results focused on the decay in time of solutions of classical and anomalous diffusive equations in a bounded domain. The size of the solution is measured in a Lebesgue space, and the setting comprises time-fractional and space-fractional equations and operators of nonlinear type. We also discuss how fractional operators may affect long-time asymptotics.
fractional derivatives; fractional PDEs; time decay estimates
Settore MAT/05 - Analisi Matematica
MATRIX
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
Affili_decay2.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 138.16 kB
Formato Adobe PDF
138.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1812.09451.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 170.31 kB
Formato Adobe PDF
170.31 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/820893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact