The coronavirus disease 2019 (COVID-19) pandemic is the defining global health and socioeconomic crisis of our time and represents the greatest challenge faced by the world since the end of the Second World War. The academic literature indicates that climatic features, specifically the temperature and absolute humidity, are very important factors affecting infectious pulmonary disease epidemics (e.g., SARS, MERS); however, the influence of climatic parameters on COVID-19 remains extremely controversial. The goal of this study is to quantify the existing relationship between several daily climate parameters (temperature, relative humidity, accumulated precipitation, solar radiation, wind direction and intensity, and evaporation), local morphological parameters, and new daily positive swabs for COVID-19, which represents the only parameter that can be statistically used to quantify the pandemic. The daily deaths parameter was not considered because it is not reliable due to frequent administrative errors. Daily data on meteorological conditions and new cases of COVID-19 were collected for the Lombardy area from March 1, 2020, to April 20, 2020. This region in Italy exhibited the largest number of official deaths in the world per million inhabitants, with a value of approximately 1700 per million on june 30, 2020. Moreover, the apparent lethality was approximately 17% in this area, mainly due to the considerable housing density and the extensive presence of industrial and craft areas. The Mann-Kendall test and multivariate statistical analysis showed that none of the considered climatic variables exhibited statistically significant relationships with the epidemiological evolution of COVID-19, at least in the spring months in temperate subcontinental climate areas, with the exception of solar radiation, which was directly related and showed an otherwise low explained variability of approximately 20%. Furthermore, the average temperatures of two highly representative meteorological stations of Molise and Lucania, the most weakly affected by the pandemic. The temperatures at these stations were approximately 1.5°C lower than that in the cities in Lombardy of Bergamo and Brescia, again confirming that a significant relationship between the increase in temperature and decrease in virology from COVID-19 was not evident, at least in the Italian peninsula.

Is There a Relationship Between Climate, Morphology and Urbanization and {COVID}19? Preliminary Analysis of Environmental and Pandemic Data in the Lombardy Region (Northern Italy) / M. Fazzini, C. Bna, A. Cecili, A. Giuliacci, S. Illuminati, F.E. Pregliasco, C. Baresi, E. Miccadei. - (2020 Aug 06).

Is There a Relationship Between Climate, Morphology and Urbanization and {COVID}19? Preliminary Analysis of Environmental and Pandemic Data in the Lombardy Region (Northern Italy)

F.E. Pregliasco;
2020

Abstract

The coronavirus disease 2019 (COVID-19) pandemic is the defining global health and socioeconomic crisis of our time and represents the greatest challenge faced by the world since the end of the Second World War. The academic literature indicates that climatic features, specifically the temperature and absolute humidity, are very important factors affecting infectious pulmonary disease epidemics (e.g., SARS, MERS); however, the influence of climatic parameters on COVID-19 remains extremely controversial. The goal of this study is to quantify the existing relationship between several daily climate parameters (temperature, relative humidity, accumulated precipitation, solar radiation, wind direction and intensity, and evaporation), local morphological parameters, and new daily positive swabs for COVID-19, which represents the only parameter that can be statistically used to quantify the pandemic. The daily deaths parameter was not considered because it is not reliable due to frequent administrative errors. Daily data on meteorological conditions and new cases of COVID-19 were collected for the Lombardy area from March 1, 2020, to April 20, 2020. This region in Italy exhibited the largest number of official deaths in the world per million inhabitants, with a value of approximately 1700 per million on june 30, 2020. Moreover, the apparent lethality was approximately 17% in this area, mainly due to the considerable housing density and the extensive presence of industrial and craft areas. The Mann-Kendall test and multivariate statistical analysis showed that none of the considered climatic variables exhibited statistically significant relationships with the epidemiological evolution of COVID-19, at least in the spring months in temperate subcontinental climate areas, with the exception of solar radiation, which was directly related and showed an otherwise low explained variability of approximately 20%. Furthermore, the average temperatures of two highly representative meteorological stations of Molise and Lucania, the most weakly affected by the pandemic. The temperatures at these stations were approximately 1.5°C lower than that in the cities in Lombardy of Bergamo and Brescia, again confirming that a significant relationship between the increase in temperature and decrease in virology from COVID-19 was not evident, at least in the Italian peninsula.
covid; climate
Settore MED/42 - Igiene Generale e Applicata
https://www.preprints.org/manuscript/202008.0163/v1
File in questo prodotto:
File Dimensione Formato  
preprints202008.0163.v1(1).pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/820157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact