Vacancy‐related complexes are suitable to provide deep electronic levels but they are hard to control spatially. With the spirit of investigating solid state devices with intentional vacancy‐related defects at controlled position, the functionalization of silicon vacancies is reported on here by implanting Ge atoms through single‐ion implantation, producing Ge‐vacancy (GeV) complexes. The quantum transport through an array of GeV complexes in a silicon‐based transistor is investigated. By exploiting a model based on an extended Hubbard Hamiltonian derived from ab initio results, anomalous activation energy values of the thermally activated conductance of both quasi‐localized and delocalized many‐body states are obtained, compared to conventional dopants. Such states are identified, forming the upper Hubbard band, as responsible for the experimental sub‐threshold transport across the transistor. The combination of the model with the single‐ion implantation method enables future research for the engineering of GeV complexes toward the creation of spatially controllable individual defects in silicon for applications in quantum information technology.

Position‐Controlled Functionalization of Vacancies in Silicon by Single‐Ion Implanted Germanium Atoms / S. Achilli, N.H. Le, G. Fratesi, N. Manini, G. Onida, M. Turchetti, G. Ferrari, T. Shinada, T. Tanii, E. Prati. - In: ADVANCED FUNCTIONAL MATERIALS. - ISSN 1616-301X. - 31:21(2021), pp. 2011175.1-2011175.11. [10.1002/adfm.202011175]

Position‐Controlled Functionalization of Vacancies in Silicon by Single‐Ion Implanted Germanium Atoms

S. Achilli
Primo
;
G. Fratesi;N. Manini;G. Onida;E. Prati
2021

Abstract

Vacancy‐related complexes are suitable to provide deep electronic levels but they are hard to control spatially. With the spirit of investigating solid state devices with intentional vacancy‐related defects at controlled position, the functionalization of silicon vacancies is reported on here by implanting Ge atoms through single‐ion implantation, producing Ge‐vacancy (GeV) complexes. The quantum transport through an array of GeV complexes in a silicon‐based transistor is investigated. By exploiting a model based on an extended Hubbard Hamiltonian derived from ab initio results, anomalous activation energy values of the thermally activated conductance of both quasi‐localized and delocalized many‐body states are obtained, compared to conventional dopants. Such states are identified, forming the upper Hubbard band, as responsible for the experimental sub‐threshold transport across the transistor. The combination of the model with the single‐ion implantation method enables future research for the engineering of GeV complexes toward the creation of spatially controllable individual defects in silicon for applications in quantum information technology.
English
Ge-vacancy complex; Hubbard model; point defects; quantum transport; single-ion implantation
Settore FIS/03 - Fisica della Materia
Articolo
Esperti anonimi
Ricerca di base
Pubblicazione scientifica
   Nanoscience Foundries and Fine Analysis
   NFFA-Europe
   EUROPEAN COMMISSION
   H2020
   654360
2021
Wiley Blackwell Science
31
21
2011175
1
11
11
Pubblicato
Periodico con rilevanza internazionale
INDACO
crossref
Aderisco
info:eu-repo/semantics/article
Position‐Controlled Functionalization of Vacancies in Silicon by Single‐Ion Implanted Germanium Atoms / S. Achilli, N.H. Le, G. Fratesi, N. Manini, G. Onida, M. Turchetti, G. Ferrari, T. Shinada, T. Tanii, E. Prati. - In: ADVANCED FUNCTIONAL MATERIALS. - ISSN 1616-301X. - 31:21(2021), pp. 2011175.1-2011175.11. [10.1002/adfm.202011175]
partially_open
Prodotti della ricerca::01 - Articolo su periodico
10
262
Article (author)
si
S. Achilli, N.H. Le, G. Fratesi, N. Manini, G. Onida, M. Turchetti, G. Ferrari, T. Shinada, T. Tanii, E. Prati
File in questo prodotto:
File Dimensione Formato  
Position_Controlled_adfm.202011175.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 3.59 MB
Formato Adobe PDF
3.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2102.01390.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/819609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact