Giant reed (Arundo donax L.) and miscanthus (Miscanthus × giganteus Greef et Deu.) are two perennial rhizomatous grasses (PRGs), considered as promising sources of lignocellulosic biomass for renewable energy production. Although the agronomic performance of these species has been addressed by several studies, the literature dedicated to the crop water use of giant reed and miscanthus is still limited. Our objective was thus to investigate giant reed and miscanthus water use by assessing crop evapotranspiration (ETc), crop coefficients (Kc) and water use efficiency (WUE). The study was carried out in central Italy and specifically designed water-balance lysimeters were used to investigate the water use of these PRGs during the 2010 and 2011 growing seasons. Giant reed showed the highest cumulative evapotranspiration, with an average consumption of approximately 1100 mm, nearly 20% higher than miscanthus (900 mm). Crop evapotranspiration rates differed significantly between the species, particularly during the midseason (from June to September), when average daily ETc was 7.4 and 6.2 mm in giant reed and miscanthus respectively. The Kc values determined in our study varied from 0.4 to 1.9 for giant reed and 0.3 to 1.6 for miscanthus. Finally, WUE was higher in miscanthus than in giant reed, with average values of 4.2 and 3.1 g L-1 respectively. Further studies concerning water use under nonoptimal water conditions should be carried out and an assessment of the response to water stress of both crops is necessary to integrate the findings from this study.

Evapotranspiration, crop coefficient and water use efficiency of giant reed (Arundo donax L.) and miscanthus (Miscanthus × giganteus Greef et Deu.) in a Mediterranean environment / F. Triana, N. Nassi o Di Nasso, G. Ragaglini, N. Roncucci, E. Bonari. - In: GCB BIOENERGY. - ISSN 1757-1693. - 7:4(2015 Jul), pp. 811-819.

Evapotranspiration, crop coefficient and water use efficiency of giant reed (Arundo donax L.) and miscanthus (Miscanthus × giganteus Greef et Deu.) in a Mediterranean environment

G. Ragaglini;
2015

Abstract

Giant reed (Arundo donax L.) and miscanthus (Miscanthus × giganteus Greef et Deu.) are two perennial rhizomatous grasses (PRGs), considered as promising sources of lignocellulosic biomass for renewable energy production. Although the agronomic performance of these species has been addressed by several studies, the literature dedicated to the crop water use of giant reed and miscanthus is still limited. Our objective was thus to investigate giant reed and miscanthus water use by assessing crop evapotranspiration (ETc), crop coefficients (Kc) and water use efficiency (WUE). The study was carried out in central Italy and specifically designed water-balance lysimeters were used to investigate the water use of these PRGs during the 2010 and 2011 growing seasons. Giant reed showed the highest cumulative evapotranspiration, with an average consumption of approximately 1100 mm, nearly 20% higher than miscanthus (900 mm). Crop evapotranspiration rates differed significantly between the species, particularly during the midseason (from June to September), when average daily ETc was 7.4 and 6.2 mm in giant reed and miscanthus respectively. The Kc values determined in our study varied from 0.4 to 1.9 for giant reed and 0.3 to 1.6 for miscanthus. Finally, WUE was higher in miscanthus than in giant reed, with average values of 4.2 and 3.1 g L-1 respectively. Further studies concerning water use under nonoptimal water conditions should be carried out and an assessment of the response to water stress of both crops is necessary to integrate the findings from this study.
WUE; Crop water use; Energy crops; Evapotranspiration; Lignocellulosic biomass; Lysimeter; Perennial rhizomatous grasses; Water requirement
Settore AGR/02 - Agronomia e Coltivazioni Erbacee
lug-2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
gcbb.12172.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 352.75 kB
Formato Adobe PDF
352.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/816315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 52
social impact