The phenomenon of fusion hindrance may have important consequences on the nuclear processes occurring in astrophysical scenarios, if it is a general behaviour of heavy-ion fusion at extreme sub-barrier energies, including reactions involving lighter systems, e.g. reactions in the carbon and oxygen burning stages of heavy stars. The hindrance is generally identified by the observation of a maximum of the S-factor vs. energy. Whether there is an S-factor maximum at very low energies for systems with a positive fusion Q-value is an experimentally challenging question. Our aim has been to search evidence for fusion hindrance in 12C + 24Mg which is a medium-light systems with positive Q-value for fusion, besides the heavier cases where hindrance is recognised to be a general phenomenon. The experiment has been performed at the XTU Tandem accelerator of LNL by directly detecting the fusion evaporation residues at very forward angles. The excitation function has been extended down to ≃10μb, i.e. 4 orders of magnitude lower than previous measurements and we observe that the S-factor develops a clear maximum vs. energy. Coupled-Channels calculations using a Woods-Saxon potential give a good account of the data near and above the barrier but over predict the cross sections at very low energies. Therefore the hindrance phenomenon is clearly recognised in 12 C + 24 Mg with an energy threshold that nicely fits the systematics in several medium-light systems. The fusion cross sections at the hindrance threshold show that the highest value (as=1.6mb) is indeed found for this system. It may be possible to extend the measurements further down in energy.

Study of fusion hindrance in the system 12C+24Mg / G. Montagnoli, A.M. Stefanini, C.L. Jiang, G. Colucci, A. Goasduff, D. Brugnara, M. Mazzocco, M. Siciliano, F. Scarlassara, L. Corradi, E. Fioretto, F. Galtarossa, M. Heine, T.V. Patten, S. Szilner, P. Colovic, T. Mijatovic, S. Bottoni, G. Jaworski, I. Zanon. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 1643:1(2020 Nov 23), pp. 012098.1-012098.7. ((Intervento presentato al 27. convegno International Nuclear Physics Conference, INPC 2019 : 29 July 2019 through 2 August 2019 tenutosi a Glasgow (United Kingdom) nel 2019.

Study of fusion hindrance in the system 12C+24Mg

S. Bottoni;
2020

Abstract

The phenomenon of fusion hindrance may have important consequences on the nuclear processes occurring in astrophysical scenarios, if it is a general behaviour of heavy-ion fusion at extreme sub-barrier energies, including reactions involving lighter systems, e.g. reactions in the carbon and oxygen burning stages of heavy stars. The hindrance is generally identified by the observation of a maximum of the S-factor vs. energy. Whether there is an S-factor maximum at very low energies for systems with a positive fusion Q-value is an experimentally challenging question. Our aim has been to search evidence for fusion hindrance in 12C + 24Mg which is a medium-light systems with positive Q-value for fusion, besides the heavier cases where hindrance is recognised to be a general phenomenon. The experiment has been performed at the XTU Tandem accelerator of LNL by directly detecting the fusion evaporation residues at very forward angles. The excitation function has been extended down to ≃10μb, i.e. 4 orders of magnitude lower than previous measurements and we observe that the S-factor develops a clear maximum vs. energy. Coupled-Channels calculations using a Woods-Saxon potential give a good account of the data near and above the barrier but over predict the cross sections at very low energies. Therefore the hindrance phenomenon is clearly recognised in 12 C + 24 Mg with an energy threshold that nicely fits the systematics in several medium-light systems. The fusion cross sections at the hindrance threshold show that the highest value (as=1.6mb) is indeed found for this system. It may be possible to extend the measurements further down in energy.
Settore FIS/04 - Fisica Nucleare e Subnucleare
23-nov-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
Montagnoli_2020_J._Phys.%3A_Conf._Ser._1643_012098.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/815585
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact