Antihydrogen atoms with K or sub-K temperature are a powerful tool to precisely probe the validity of fundamental physics laws and the design of highly sensitive experiments needs antihydrogen with controllable and well defined conditions. We present here experimental results on the production of antihydrogen in a pulsed mode in which the time when 90% of the atoms are produced is known with an uncertainty of similar to 250 ns. The pulsed source is generated by the charge-exchange reaction between Rydberg positronium atoms-produced via the injection of a pulsed positron beam into a nanochanneled Si target, and excited by laser pulses-and antiprotons, trapped, cooled and manipulated in electromagnetic traps. The pulsed production enables the control of the antihydrogen temperature, the tunability of the Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. The production of pulsed antihydrogen is a major landmark in the AEgIS experiment to perform direct measurements of the validity of the Weak Equivalence Principle for antimatter.

Pulsed production of antihydrogen / C. Amsler, M. Antonello, A. Belov, G. Bonomi, R.S. Brusa, M. Caccia, A. Camper, R. Caravita, F. Castelli, P. Cheinet, D. Comparat, G. Consolati, A. Demetrio, L. Di Noto, M. Doser, M. Fanì, R. Ferragut, J. Fesel, S. Gerber, M. Giammarchi, A. Gligorova, L.T. Glöggler, F. Guatieri, S. Haider, A. Hinterberger, A. Kellerbauer, O. Khalidova, D. Krasnický, V. Lagomarsino, C. Malbrunot, S. Mariazzi, V. Matveev, S. Müller, G. Nebbia, P. Nedelec, L. Nowak, M. Oberthaler, E. Oswald, D. Pagano, L. Penasa, V. Petracek, L. Povolo, F. Prelz, M. Prevedelli, B. Rienäcker, O. Røhne, A. Rotondi, H. Sandaker, R. Santoro, G. Testera, I. Tietje, V. Toso, T. Wolz, P. Yzombard, C. Zimmer, N. Zurlo. - In: COMMUNICATIONS PHYSICS. - ISSN 2399-3650. - 4:1(2021), pp. 19.1-19.11. [10.1038/s42005-020-00494-z]

Pulsed production of antihydrogen

F. Castelli;M. Giammarchi;F. Prelz;
2021

Abstract

Antihydrogen atoms with K or sub-K temperature are a powerful tool to precisely probe the validity of fundamental physics laws and the design of highly sensitive experiments needs antihydrogen with controllable and well defined conditions. We present here experimental results on the production of antihydrogen in a pulsed mode in which the time when 90% of the atoms are produced is known with an uncertainty of similar to 250 ns. The pulsed source is generated by the charge-exchange reaction between Rydberg positronium atoms-produced via the injection of a pulsed positron beam into a nanochanneled Si target, and excited by laser pulses-and antiprotons, trapped, cooled and manipulated in electromagnetic traps. The pulsed production enables the control of the antihydrogen temperature, the tunability of the Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. The production of pulsed antihydrogen is a major landmark in the AEgIS experiment to perform direct measurements of the validity of the Weak Equivalence Principle for antimatter.
Settore FIS/01 - Fisica Sperimentale
Settore FIS/04 - Fisica Nucleare e Subnucleare
2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
PulsedProductionAntiH_physcomm 2021.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/813338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 33
social impact