Polyunsaturated fatty acids (PUFAs) biostatus has been proposed as possible attention deficit hyperactivity disorder (ADHD) diagnosis biomarker. The present exploratory study aimed to investigate the association between PUFAs biostatus and cerebral cortex metabolism measured by functional Near Infrared Spectroscopy (fNIRS) in a sample of children with and without ADHD. 24 children with ADHD and 22 typically developing (TD) peers, aged 8–14, were recruited. Linoleic, arachidonic, docosahexaenoic and eicosapentaenoic acids levels were evaluated in whole blood. All children underwent fNIRS while performing an n-back working memory task. Between groups comparisons revealed lower levels of arachidonic acid in children with ADHD and stronger NIRS signal in TD participants, especially when completing more difficult tasks. Correlations conducted between fNIRS activation and PUFA biostatus revealed several associations between hemodynamic changes in the frontoparietal regions and fatty acids profile across participants. This result was also confirmed by the multiple hierarchical regression analyses that remarked an inverse effect of eicosapentaenoic acid levels on oxyhemoglobin values in right frontoparietal region. Such preliminary findings, if confirmed, would suggest that PUFAs could play a role in atypical neurodevelopment.

Association between fatty acids profile and cerebral blood flow : an exploratory fNIRS study on children with and without ADHD / S. Grazioli, A. Crippa, M. Mauri, C. Piazza, A. Bacchetta, A. Salandi, S. Trabattoni, C. Agostoni, M. Molteni, M. Nobile. - In: NUTRIENTS. - ISSN 2072-6643. - 11:10(2019), pp. 2414.1-2414.15. [10.3390/nu11102414]

Association between fatty acids profile and cerebral blood flow : an exploratory fNIRS study on children with and without ADHD

C. Agostoni;
2019

Abstract

Polyunsaturated fatty acids (PUFAs) biostatus has been proposed as possible attention deficit hyperactivity disorder (ADHD) diagnosis biomarker. The present exploratory study aimed to investigate the association between PUFAs biostatus and cerebral cortex metabolism measured by functional Near Infrared Spectroscopy (fNIRS) in a sample of children with and without ADHD. 24 children with ADHD and 22 typically developing (TD) peers, aged 8–14, were recruited. Linoleic, arachidonic, docosahexaenoic and eicosapentaenoic acids levels were evaluated in whole blood. All children underwent fNIRS while performing an n-back working memory task. Between groups comparisons revealed lower levels of arachidonic acid in children with ADHD and stronger NIRS signal in TD participants, especially when completing more difficult tasks. Correlations conducted between fNIRS activation and PUFA biostatus revealed several associations between hemodynamic changes in the frontoparietal regions and fatty acids profile across participants. This result was also confirmed by the multiple hierarchical regression analyses that remarked an inverse effect of eicosapentaenoic acid levels on oxyhemoglobin values in right frontoparietal region. Such preliminary findings, if confirmed, would suggest that PUFAs could play a role in atypical neurodevelopment.
ADHD; Attention; Biomarker; Cerebral blood flow; NIRS; Polyunsaturated fatty acids; Rehabilitation; Adolescent; Cerebrovascular Circulation; Child; Cross-Sectional Studies; Fatty Acids; Female; Humans; Male; Spectroscopy, Near-Infrared; Attention Deficit Disorder with Hyperactivity
Settore MED/38 - Pediatria Generale e Specialistica
2019
Article (author)
File in questo prodotto:
File Dimensione Formato  
nutrients-11-02414.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/809660
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact