In Morosi and Pizzocchero (2015) and previous papers by the same authors, a general smooth setting was proposed for the incompressible Navier-Stokes (NS) Cauchy problem on a torus of any dimension d greater than or equal to 2, and the a posteriori analysis of its approximate solutions. In this note, using the same setting I propose an elementary proof of the following statement: global existence and time decay of the NS solutions are stable properties with respect to perturbations of the initial datum. Fully explicit estimates are derived, using Sobolev norms of arbitrarily high order. An application is proposed, in which the initial data are generalized Beltrami flows. A comparison with the related literature is performed.

On the global stability of smooth solutions of the Navier-Stokes equations / L. Pizzocchero. - In: APPLIED MATHEMATICS LETTERS. - ISSN 0893-9659. - 115:(2021 May), pp. 106970.1-106970.11. [10.1016/j.aml.2020.106970]

On the global stability of smooth solutions of the Navier-Stokes equations

L. Pizzocchero
2021

Abstract

In Morosi and Pizzocchero (2015) and previous papers by the same authors, a general smooth setting was proposed for the incompressible Navier-Stokes (NS) Cauchy problem on a torus of any dimension d greater than or equal to 2, and the a posteriori analysis of its approximate solutions. In this note, using the same setting I propose an elementary proof of the following statement: global existence and time decay of the NS solutions are stable properties with respect to perturbations of the initial datum. Fully explicit estimates are derived, using Sobolev norms of arbitrarily high order. An application is proposed, in which the initial data are generalized Beltrami flows. A comparison with the related literature is performed.
Navier-Stokes equations; existence and regularity theory; global stability
Settore MAT/07 - Fisica Matematica
Settore MAT/05 - Analisi Matematica
   Teorie geometriche e analitiche dei sistemi Hamiltoniani in dimensioni finite e infinite
   MINISTERO DELL'ISTRUZIONE E DEL MERITO
   2010JJ4KPA_002
mag-2021
Article (author)
File in questo prodotto:
File Dimensione Formato  
global_definitivo.pdf

Open Access dal 02/01/2023

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 430.9 kB
Formato Adobe PDF
430.9 kB Adobe PDF Visualizza/Apri
1-s2.0-S0893965920304997-main.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 961.65 kB
Formato Adobe PDF
961.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/808431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact