Modern intelligent software systems are rapidly growing in complexity and scale, and many real usage scenarios might be impossible to reproduce and validate at design-time. As envisioned by the Models@run.time research community, the use of formal models at runtime are fundamental to address this challenge. In this paper, we explore the concept of ASM@run.time and put this definition into the context of the runtime enforcement technique to address the runtime assurance of software systems. This is a work-in-progress research line.

Exploring the Concept of Abstract State Machines for System Runtime Enforcement / E.M. Riccobene, P. Scandurra (LECTURE NOTES IN ARTIFICIAL INTELLIGENCE). - In: Rigorous State-Based Methods / [a cura di] A. Raschke, D. Méry, F. Houdek. - [s.l] : Springer, 2020. - ISBN 9783030480769. - pp. 244-247 (( Intervento presentato al 7. convegno International Conference, ABZ 2020 tenutosi a Ulm nel 2020 [10.1007/978-3-030-48077-6_18].

Exploring the Concept of Abstract State Machines for System Runtime Enforcement

E.M. Riccobene
;
2020

Abstract

Modern intelligent software systems are rapidly growing in complexity and scale, and many real usage scenarios might be impossible to reproduce and validate at design-time. As envisioned by the Models@run.time research community, the use of formal models at runtime are fundamental to address this challenge. In this paper, we explore the concept of ASM@run.time and put this definition into the context of the runtime enforcement technique to address the runtime assurance of software systems. This is a work-in-progress research line.
Settore INF/01 - Informatica
2020
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
main_short.pdf

accesso riservato

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 239.65 kB
Formato Adobe PDF
239.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Riccobene-Scandurra2020_Chapter_ExploringTheConceptOfAbstractS.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 344.6 kB
Formato Adobe PDF
344.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/806979
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact