As well known, classical catenoids in R3 possess logarithmic growth at infinity. In this note we prove that the case of nonlocal minimal surfaces is significantly different, and indeed all nonlocal catenoids must grow at least linearly. More generally, we prove that stationary sets for the nonlocal perimeter functional which grow sublinearly at infinity are necessarily half-spaces.

On the growth of nonlocal catenoids / M. Cozzi, E. Valdinoci. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 31:1(2020 Apr 04), pp. 237-248. [10.4171/RLM/888]

On the growth of nonlocal catenoids

M. Cozzi
;
E. Valdinoci
2020

Abstract

As well known, classical catenoids in R3 possess logarithmic growth at infinity. In this note we prove that the case of nonlocal minimal surfaces is significantly different, and indeed all nonlocal catenoids must grow at least linearly. More generally, we prove that stationary sets for the nonlocal perimeter functional which grow sublinearly at infinity are necessarily half-spaces.
Asymptotics; Fractional perimeter; Nonlocal catenoids; Nonlocal minimal surfaces
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
4-apr-2020
3-apr-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
nota rigsublin finale.pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Licenza: Creative commons
Dimensione 342.33 kB
Formato Adobe PDF
342.33 kB Adobe PDF Visualizza/Apri
10.4171-rlm-888.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Licenza: Nessuna licenza
Dimensione 115.49 kB
Formato Adobe PDF
115.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/805663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact