Lobato and Robinson (1998) develop semiparametric tests for the null hypothesis that a series is weakly autocorrelated, or I(0), about a constant level, against frac- tionally integrated alternatives. These tests have the advantage that the user is not required to specify a parametric model for any weak autocorrelation present in the series. We extend this approach in two distinct ways. First we show that it can be generalised to allow for testing of the null hypothesis that a series is I(d) for any d lying in the usual stationary and invertible region of the parameter space. The second extension is the more substantive and addresses the well known issue in the literature that long memory and level breaks can be mistaken for one another, with unmodelled level breaks rendering fractional integration tests highly unreliable. To deal with this inference problem we extend the Lobato and Robinson (1998) ap- proach to allow for the possibility of changes in level at unknown points in the se- ries. We show that the resulting statistics have standard limiting null distributions, and that the tests based on these statistics attain the same asymptotic local power functions as infeasible tests based on the unobserved errors, and hence there is no loss in asymptotic local power from allowing for level breaks, even where none is present. We report results from a Monte Carlo study into the finite-sample be- haviour of our proposed tests, as well as several empirical examples.
Semiparametric Tests for the Order of Integration in the Possible Presence of Level Breaks / F. Iacone, M. Nielsen, R. Taylor. - In: JOURNAL OF BUSINESS & ECONOMIC STATISTICS. - ISSN 0735-0015. - 40:2(2022 Apr 03), pp. 880-896. [10.1080/07350015.2021.1876712]
Semiparametric Tests for the Order of Integration in the Possible Presence of Level Breaks
F. IaconePrimo
;
2022
Abstract
Lobato and Robinson (1998) develop semiparametric tests for the null hypothesis that a series is weakly autocorrelated, or I(0), about a constant level, against frac- tionally integrated alternatives. These tests have the advantage that the user is not required to specify a parametric model for any weak autocorrelation present in the series. We extend this approach in two distinct ways. First we show that it can be generalised to allow for testing of the null hypothesis that a series is I(d) for any d lying in the usual stationary and invertible region of the parameter space. The second extension is the more substantive and addresses the well known issue in the literature that long memory and level breaks can be mistaken for one another, with unmodelled level breaks rendering fractional integration tests highly unreliable. To deal with this inference problem we extend the Lobato and Robinson (1998) ap- proach to allow for the possibility of changes in level at unknown points in the se- ries. We show that the resulting statistics have standard limiting null distributions, and that the tests based on these statistics attain the same asymptotic local power functions as infeasible tests based on the unobserved errors, and hence there is no loss in asymptotic local power from allowing for level breaks, even where none is present. We report results from a Monte Carlo study into the finite-sample be- haviour of our proposed tests, as well as several empirical examples.File | Dimensione | Formato | |
---|---|---|---|
LWLM-final.pdf
accesso riservato
Tipologia:
Pre-print (manoscritto inviato all'editore)
Dimensione
866.08 kB
Formato
Adobe PDF
|
866.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Semiparametric Tests for the Order of Integration in the Possible Presence of Level Breaks.pdf
Open Access dal 21/01/2022
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Visualizza/Apri |
Semiparametric Tests for the Order of Integration in the Possible Presence of Level Breaks.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
1.51 MB
Formato
Adobe PDF
|
1.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.