A graph G = (V, E) is monopolar if V can be partitioned into a stable set and a set inducing the union of vertex-disjoint cliques. Motivated by an application of the clique partitioning problem on monopolar graphs to the cosmetic manufacturing, we study the complexity of computing classical graph parameters on the class of monopolar graphs. We show that computing the clique partitioning, stability and chromatic numbers of monopolar graphs is NP-hard. Conversely, we prove that every monopolar graph has a polynomial number of maximal cliques thus obtaining that a maximum-weight clique can be found in polynomial time on monopolar graphs.
Monopolar graphs: Complexity of computing classical graph parameters / M. Barbato, D. Bezzi. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - 291:(2021 Mar 11), pp. 277-285. [10.1016/j.dam.2020.12.023]
Monopolar graphs: Complexity of computing classical graph parameters
M. Barbato
Primo
;D. BezziUltimo
2021
Abstract
A graph G = (V, E) is monopolar if V can be partitioned into a stable set and a set inducing the union of vertex-disjoint cliques. Motivated by an application of the clique partitioning problem on monopolar graphs to the cosmetic manufacturing, we study the complexity of computing classical graph parameters on the class of monopolar graphs. We show that computing the clique partitioning, stability and chromatic numbers of monopolar graphs is NP-hard. Conversely, we prove that every monopolar graph has a polynomial number of maximal cliques thus obtaining that a maximum-weight clique can be found in polynomial time on monopolar graphs.File | Dimensione | Formato | |
---|---|---|---|
Monopolar_Graphs_post_print.pdf
Open Access dal 30/12/2022
Descrizione: Articolo principale. Accepted paper con ulteriori correzioni fatte durante la proof-reading. Possibili discrepanze con la versione apparsa sulla rivista.
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
346.43 kB
Formato
Adobe PDF
|
346.43 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0166218X20305485-main.pdf
accesso riservato
Tipologia:
Publisher's version/PDF
Dimensione
559.76 kB
Formato
Adobe PDF
|
559.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.