The cytotoxic activity of ecteinascidin 743 (ET-743), a natural product derived from the marine tunicate Ecteinascidia turbinata that exhibits potent anti-tumor activity in pre-clinical systems and promising activity in phase I and II clinical trials, was investigated in a number of cell systems with well-defined deficiencies in DNA-repair mechanisms. ET-743 binds to N2 of guanine in the minor groove, but its activity does not appear to be related to DNA-topoisomerase I poisoning as the drug is equally active in wild-type yeast and in yeast with a deletion in the DNA-topoisomerase I gene. Defects in the mismatch repair pathway, usually associated with increased resistance to methylating agents and cisplatin, did not affect the cytotoxic activity of ET-743. However, ET-743 did show decreased activity (from 2- to 8-fold) in nucleotide excision repair (NER)-deficient cell lines compared to NER-proficient cell lines, from either hamsters or humans. Restoration of NER function sensitized cells to ET-743 treatment. The DNA double-strand-break repair pathway was also investigated using human glioblastoma cell lines MO59K and MO59J, respectively, proficient and deficient in DNA-dependent protein kinase (DNA-PK). ET-743 was more effective in cells lacking DNA-PK; moreover, pre-treatment of HCT-116 colon carcinoma cells with wortmannin, a potent inhibitor of DNA-PK, sensitized cells to ET-743. An increase in ET-743 sensitivity was also observed in ataxia telangiectasia-mutated cells. Our data strongly suggest that ET-743 has a unique mechanism of interaction with DNA.

Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways / G. Damia, S. Silvestri, L. Carrassa, L. Filiberti, G.T. Faircloth, G. Liberi, M. Foiani, M. D'Incalci. - In: INTERNATIONAL JOURNAL OF CANCER. - ISSN 0020-7136. - 92:4(2001), pp. 583-588. [10.1002/ijc.1221]

Unique pattern of ET-743 activity in different cellular systems with defined deficiencies in DNA-repair pathways

S. Silvestri;L. Filiberti;G. Liberi;M. Foiani
Penultimo
;
2001

Abstract

The cytotoxic activity of ecteinascidin 743 (ET-743), a natural product derived from the marine tunicate Ecteinascidia turbinata that exhibits potent anti-tumor activity in pre-clinical systems and promising activity in phase I and II clinical trials, was investigated in a number of cell systems with well-defined deficiencies in DNA-repair mechanisms. ET-743 binds to N2 of guanine in the minor groove, but its activity does not appear to be related to DNA-topoisomerase I poisoning as the drug is equally active in wild-type yeast and in yeast with a deletion in the DNA-topoisomerase I gene. Defects in the mismatch repair pathway, usually associated with increased resistance to methylating agents and cisplatin, did not affect the cytotoxic activity of ET-743. However, ET-743 did show decreased activity (from 2- to 8-fold) in nucleotide excision repair (NER)-deficient cell lines compared to NER-proficient cell lines, from either hamsters or humans. Restoration of NER function sensitized cells to ET-743 treatment. The DNA double-strand-break repair pathway was also investigated using human glioblastoma cell lines MO59K and MO59J, respectively, proficient and deficient in DNA-dependent protein kinase (DNA-PK). ET-743 was more effective in cells lacking DNA-PK; moreover, pre-treatment of HCT-116 colon carcinoma cells with wortmannin, a potent inhibitor of DNA-PK, sensitized cells to ET-743. An increase in ET-743 sensitivity was also observed in ataxia telangiectasia-mutated cells. Our data strongly suggest that ET-743 has a unique mechanism of interaction with DNA.
marine compound; ET-743; DNA repair; nucleotide excision repair; DNA-protein kinase; ATM
Settore BIO/11 - Biologia Molecolare
2001
Article (author)
File in questo prodotto:
File Dimensione Formato  
ijc.1221.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 135.83 kB
Formato Adobe PDF
135.83 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/802345
Citazioni
  • ???jsp.display-item.citation.pmc??? 42
  • Scopus 168
  • ???jsp.display-item.citation.isi??? 150
social impact