Phosphorylation of eukaryotic translation initiation factor 2 (eIF-2) in amino acid-starved cells of the yeast Saccharomyces cerevisiae reduces general protein synthesis but specifically stimulates translation of GCN4 mRNA. This regulatory mechanism is dependent on the nonessential GCN3 protein and multiple essential proteins encoded by GCD genes. Previous genetic and biochemical experiments led to the conclusion that GCD1, GCD2, and GCN3 are components of the GCD complex, recently shown to be the yeast equivalent of the mammalian guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In this report, we identify new constituents of the GCD-eIF-2B complex and probe interactions between its different subunits. Biochemical evidence is presented that GCN3 is an integral component of the GCD-eIF-2B complex that, while dispensable, can be mutationally altered to have a substantial inhibitory effect on general translation initiation. The amino acid sequence changes for three gcd2 mutations have been determined, and we describe several examples of mutual suppression involving the gcd2 mutations and particular alleles of GCN3. These allele-specific interactions have led us to propose that GCN3 and GCD2 directly interact in the GCD-eIF-2B complex. Genetic evidence that GCD6 and GCD7 encode additional subunits of the GCD- eIF-2B complex was provided by the fact that reduced-function mutations in these genes are lethal in strains deleted for GCN3, the same interaction described previously for mutations in GCD1 and GCD2. Biochemical experiments showing that GCD6 and GCD7 copurify and coimmunoprecipitate with GCD1, GCD2, GCN3, and subunits of eIF-2 have confirmed that GCD6 and GCD7 are subunits of the GCD-eIF-2B complex. The fact that all five subunits of yeast eIF-2B were first identified as translational regulators of GCN4 strongly suggests that regulation of guanine nucleotide exchange on eIF-2 is a key control point for translation in yeast cells just as in mammalian cells.

Guanine nucleotide exchange factor for eukaryotic translation initiation factor 2 in Saccharomyces cerevisiae: Interactions between the essential subunits GCD2, GCD6, and GCD7 and the regulatory subunit GCN3 / J.L. Bushman, M. Foiani, A.M. Cigan, C.J. Paddon, A.G. Hinnebusch. - In: MOLECULAR AND CELLULAR BIOLOGY. - ISSN 0270-7306. - 13:8(1993), pp. 4618-4631. [10.1128/MCB.13.8.4618]

Guanine nucleotide exchange factor for eukaryotic translation initiation factor 2 in Saccharomyces cerevisiae: Interactions between the essential subunits GCD2, GCD6, and GCD7 and the regulatory subunit GCN3

M. Foiani
Secondo
;
1993

Abstract

Phosphorylation of eukaryotic translation initiation factor 2 (eIF-2) in amino acid-starved cells of the yeast Saccharomyces cerevisiae reduces general protein synthesis but specifically stimulates translation of GCN4 mRNA. This regulatory mechanism is dependent on the nonessential GCN3 protein and multiple essential proteins encoded by GCD genes. Previous genetic and biochemical experiments led to the conclusion that GCD1, GCD2, and GCN3 are components of the GCD complex, recently shown to be the yeast equivalent of the mammalian guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In this report, we identify new constituents of the GCD-eIF-2B complex and probe interactions between its different subunits. Biochemical evidence is presented that GCN3 is an integral component of the GCD-eIF-2B complex that, while dispensable, can be mutationally altered to have a substantial inhibitory effect on general translation initiation. The amino acid sequence changes for three gcd2 mutations have been determined, and we describe several examples of mutual suppression involving the gcd2 mutations and particular alleles of GCN3. These allele-specific interactions have led us to propose that GCN3 and GCD2 directly interact in the GCD-eIF-2B complex. Genetic evidence that GCD6 and GCD7 encode additional subunits of the GCD- eIF-2B complex was provided by the fact that reduced-function mutations in these genes are lethal in strains deleted for GCN3, the same interaction described previously for mutations in GCD1 and GCD2. Biochemical experiments showing that GCD6 and GCD7 copurify and coimmunoprecipitate with GCD1, GCD2, GCN3, and subunits of eIF-2 have confirmed that GCD6 and GCD7 are subunits of the GCD-eIF-2B complex. The fact that all five subunits of yeast eIF-2B were first identified as translational regulators of GCN4 strongly suggests that regulation of guanine nucleotide exchange on eIF-2 is a key control point for translation in yeast cells just as in mammalian cells.
English
Amnio-acid control; yeast actin mutations; protein-synthesis; messanger-RNA; factor-II; alpha-subunit; transcriptional activator; ribosomal-protein; reversing factor; gene
Settore BIO/11 - Biologia Molecolare
Articolo
Esperti anonimi
Pubblicazione scientifica
1993
13
8
4618
4631
14
Pubblicato
Periodico con rilevanza internazionale
Aderisco
info:eu-repo/semantics/article
Guanine nucleotide exchange factor for eukaryotic translation initiation factor 2 in Saccharomyces cerevisiae: Interactions between the essential subunits GCD2, GCD6, and GCD7 and the regulatory subunit GCN3 / J.L. Bushman, M. Foiani, A.M. Cigan, C.J. Paddon, A.G. Hinnebusch. - In: MOLECULAR AND CELLULAR BIOLOGY. - ISSN 0270-7306. - 13:8(1993), pp. 4618-4631. [10.1128/MCB.13.8.4618]
open
Prodotti della ricerca::01 - Articolo su periodico
5
262
Article (author)
no
J.L. Bushman, M. Foiani, A.M. Cigan, C.J. Paddon, A.G. Hinnebusch
File in questo prodotto:
File Dimensione Formato  
Molecular and Cellular Biology-1993-Bushman-4618.full.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 3.62 MB
Formato Adobe PDF
3.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/802343
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 47
social impact