This work proposes an empirical mode decomposition (EMD) method to assess the strength of the interactions between heart period (HP) and systolic arterial pressure (SAP) variability. EMD was exploited to decompose the original series (OR) into its first, and fastest, intrinsic mode function (IMF1) and the residual (RES) computed by subtracting the IMF1 from OR. EMD procedure was applied to both HP and SAP variability series. Then, the cross correlation function (CCF) was computed over OR, IMF1 and RES series derived from HP and SAP variability in 13 healthy subjects (age 27±8 yrs, 5 males) at rest in supine position (REST) and during head-up tilt (TILT). The first CCF maximum at negative time lags and the first CCF minimum at positive time lags were taken respectively as indexes of the coupling along the feedback baroreflex and feedforward mechanical arms of HP-SAP closed-loop control. Results showed that the coupling strength is increased during TILT on both arms and this result holds on REST. At REST the coupling along both arms was stronger when computed over IMF1 because interactions were mainly governed by respiration. This result was not observed during TILT possibly due to the reduced importance of respiration compared to other mechanisms acting at slower time scales. The proposed method allowed the investigation of the strength of HP-SAP variability interactions according to the time scales of the physiological mechanisms.The proposed EMD-based method allows the quantification of the strength of the HP-SAP closed-loop variability interactions according to the different time scales of respiration and slower baroreflex-mediated reflexes.

An empirical mode decomposition approach to assess the strength of heart period-systolic arterial pressure variability interactions / V. Bari, B. Cairo, B. De Maria, D. Tonon, G. Rossato, L. Faes, A. Porta (ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY). - In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)[s.l] : IEEE P, 2020. - ISBN 9781728119915. - pp. 2573-2576 (( Intervento presentato al 42. convegno Annual International Conference of the IEEE EMBS tenutosi a Montreal nel 2020.

An empirical mode decomposition approach to assess the strength of heart period-systolic arterial pressure variability interactions

V. Bari
Primo
;
B. Cairo
Secondo
;
A. Porta
Ultimo
2020

Abstract

This work proposes an empirical mode decomposition (EMD) method to assess the strength of the interactions between heart period (HP) and systolic arterial pressure (SAP) variability. EMD was exploited to decompose the original series (OR) into its first, and fastest, intrinsic mode function (IMF1) and the residual (RES) computed by subtracting the IMF1 from OR. EMD procedure was applied to both HP and SAP variability series. Then, the cross correlation function (CCF) was computed over OR, IMF1 and RES series derived from HP and SAP variability in 13 healthy subjects (age 27±8 yrs, 5 males) at rest in supine position (REST) and during head-up tilt (TILT). The first CCF maximum at negative time lags and the first CCF minimum at positive time lags were taken respectively as indexes of the coupling along the feedback baroreflex and feedforward mechanical arms of HP-SAP closed-loop control. Results showed that the coupling strength is increased during TILT on both arms and this result holds on REST. At REST the coupling along both arms was stronger when computed over IMF1 because interactions were mainly governed by respiration. This result was not observed during TILT possibly due to the reduced importance of respiration compared to other mechanisms acting at slower time scales. The proposed method allowed the investigation of the strength of HP-SAP variability interactions according to the time scales of the physiological mechanisms.The proposed EMD-based method allows the quantification of the strength of the HP-SAP closed-loop variability interactions according to the different time scales of respiration and slower baroreflex-mediated reflexes.
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
2020
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
VBari_EMBC_2020_EMD.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 641.9 kB
Formato Adobe PDF
641.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/801407
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact