The synthesis and photophysical properties of a system consisting of a bay-functionalized perylene bisimide, containing four appended pyrene and two coordinating pyridine units, and its reference system are described. A complete study of their photophysical properties was obtained using UV-vis absorption, steady state and time-resolved emission, and femtosecond transient absorption. Analysis of the data, obtained from time-resolved emission and femtosecond transient absorption spectroscopy, showed the presence of both photoinduced electron and energy transfer processes. A high yield (>90%) and fast photoinduced energy transfer (ken ≈ 6.2 × 109 s-1) is followed by efficient electron transfer (70%, ket ≈ 6.6 × 109 s-1) from the pyrene units to the perylene bisimide moiety. The energy donor-acceptor distance, R = 8.6 Å, is calculated from the experimental energy transfer rate using Förster theory. Temperature-dependent time-resolved emission spectroscopy showed an increase of the acceptor emission lifetime with decreasing temperature. It also indicates the presence of different conformations because two different electron transfer barriers (0.08 and 0.42 eV) were found. These barrier values were corroborated by a theoretical analysis of the energetics of the process using Marcus theory, indicating average donor-acceptor distances of 4.5 Å (room temperature) to 11 Å (at low T).

Photoinduced electron and energy transfer processes in a bichromophoric pyrene-perylene bisimide system / B.K. Kaletas, R. Dobrawa, A. Sautter, F. Wurtner, M. Zimine, L. De Cola, R.M. Williams. - In: JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY. - ISSN 1089-5639. - 108:11(2004), pp. 1900-1909. [10.1021/jp0372688]

Photoinduced electron and energy transfer processes in a bichromophoric pyrene-perylene bisimide system

L. De Cola;
2004

Abstract

The synthesis and photophysical properties of a system consisting of a bay-functionalized perylene bisimide, containing four appended pyrene and two coordinating pyridine units, and its reference system are described. A complete study of their photophysical properties was obtained using UV-vis absorption, steady state and time-resolved emission, and femtosecond transient absorption. Analysis of the data, obtained from time-resolved emission and femtosecond transient absorption spectroscopy, showed the presence of both photoinduced electron and energy transfer processes. A high yield (>90%) and fast photoinduced energy transfer (ken ≈ 6.2 × 109 s-1) is followed by efficient electron transfer (70%, ket ≈ 6.6 × 109 s-1) from the pyrene units to the perylene bisimide moiety. The energy donor-acceptor distance, R = 8.6 Å, is calculated from the experimental energy transfer rate using Förster theory. Temperature-dependent time-resolved emission spectroscopy showed an increase of the acceptor emission lifetime with decreasing temperature. It also indicates the presence of different conformations because two different electron transfer barriers (0.08 and 0.42 eV) were found. These barrier values were corroborated by a theoretical analysis of the energetics of the process using Marcus theory, indicating average donor-acceptor distances of 4.5 Å (room temperature) to 11 Å (at low T).
3,4,9,10-perylenetetracarboxylic dianhydride dyes; transient absorption; melamine assemblies; highly fluorescent; dendrimers; singlet; photochemistry; terrylene; sensitization; spectroscopy
Settore CHIM/03 - Chimica Generale e Inorganica
2004
Article (author)
File in questo prodotto:
File Dimensione Formato  
jp0372688.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 254.95 kB
Formato Adobe PDF
254.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/794531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 79
social impact