A single organism comprises diverse types of cells. To acquire a detailed understanding of the biological functions of each cell, comprehensive control and analysis of homeostatic processes at the single-cell level are required. In this study, we develop a new type of light-driven nanomodulator comprising dye-functionalized carbon nanohorns (CNHs) that generate heat and reactive oxygen species under biologically transparent near-infrared (NIR) laser irradiation. By exploiting the physicochemical properties of the nanohorns, cellular calcium ion flux and membrane currents were successfully controlled at the single-cell level. In addition, the nanomodulator allows a remote bioexcitation of tissues during NIR laser exposure making this system a powerful tool for single-cell analyses and innovative cell therapies.

Photofunctional nanomodulators for bioexcitation / E. Miyako, J. Russier, M. Mauro, C. Cebrian, H. Yawo, C. Menard-Moyon, J.A. Hutchison, M. Yudasaka, S. Iijima, L. De Cola, A. Bianco. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - 53:48(2014), pp. 13121-13125. [10.1002/anie.201407169]

Photofunctional nanomodulators for bioexcitation

L. De Cola;
2014

Abstract

A single organism comprises diverse types of cells. To acquire a detailed understanding of the biological functions of each cell, comprehensive control and analysis of homeostatic processes at the single-cell level are required. In this study, we develop a new type of light-driven nanomodulator comprising dye-functionalized carbon nanohorns (CNHs) that generate heat and reactive oxygen species under biologically transparent near-infrared (NIR) laser irradiation. By exploiting the physicochemical properties of the nanohorns, cellular calcium ion flux and membrane currents were successfully controlled at the single-cell level. In addition, the nanomodulator allows a remote bioexcitation of tissues during NIR laser exposure making this system a powerful tool for single-cell analyses and innovative cell therapies.
Biological activity; Laser chemistry; Nanomaterials; Nanotechnology
Settore CHIM/03 - Chimica Generale e Inorganica
2014
Article (author)
File in questo prodotto:
File Dimensione Formato  
anie.201407169.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/794374
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 64
social impact