We study the optical properties of glass exposed to ionizing radiation as it occurs in the space environment. Twenty-four glass types have been considered, both space-qualified and not space-qualified. Seventy-two samples (3 for each glass type) have been irradiated to simulate total doses of 10 and 30 krad imposed by a proton beam at KVI-Centre of Advanced Radiation Technology (Groeningen). Combining information concerning stopping power and proton fluence, the time required to reproduce any given total dose in a real environment can be easily obtained. The optical properties, such as spectral transmission and light scattering, have been measured before and after irradiation for each sample. Transmission has been characterized within the wavelength range of 200 to 1100 nm. Indications that systematical issues depend on the dopant or composition are found and described. Our work aims at extending the existing list of space-compliant glasses in terms of radiation damage.

Effects of radiation damage on the optical properties of glass / F. Simonetto, M. Marmonti, M.A.C. Potenza. - In: JOURNAL OF ASTRONOMICAL TELESCOPES, INSTRUMENTS, AND SYSTEMS. - ISSN 2329-4124. - 6:3(2020 Jul 01). [10.1117/1.JATIS.6.3.038004]

Effects of radiation damage on the optical properties of glass

F. Simonetto
Primo
;
M.A.C. Potenza
Ultimo
2020

Abstract

We study the optical properties of glass exposed to ionizing radiation as it occurs in the space environment. Twenty-four glass types have been considered, both space-qualified and not space-qualified. Seventy-two samples (3 for each glass type) have been irradiated to simulate total doses of 10 and 30 krad imposed by a proton beam at KVI-Centre of Advanced Radiation Technology (Groeningen). Combining information concerning stopping power and proton fluence, the time required to reproduce any given total dose in a real environment can be easily obtained. The optical properties, such as spectral transmission and light scattering, have been measured before and after irradiation for each sample. Transmission has been characterized within the wavelength range of 200 to 1100 nm. Indications that systematical issues depend on the dopant or composition are found and described. Our work aims at extending the existing list of space-compliant glasses in terms of radiation damage.
optics; radiation; scattering; space missions; transmission
Settore FIS/03 - Fisica della Materia
1-lug-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
2020_SPIE_vetri.pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/791868
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact