We rephrase some well-known results in Donaldson-Thomas theory in terms of (formal families of) Frobenius type and CV-structures on a vector bundle in the sense of Hertling. We study these structures in an abstract setting, and prove a convergence result which is relevant to the case of triangulated categories. An application to physical field theory is also briey discussed.
Frobenius type and CV-structures for Donaldson-Thomas theory and a convergence property / A. Barbieri, J. Stoppa. - In: COMMUNICATIONS IN ANALYSIS AND GEOMETRY. - ISSN 1019-8385. - 27:2(2019 Aug 23), pp. 287-327. [10.4310/cag.2019.v27.n2.a2]
Frobenius type and CV-structures for Donaldson-Thomas theory and a convergence property
A. Barbieri
Co-primo
;
2019
Abstract
We rephrase some well-known results in Donaldson-Thomas theory in terms of (formal families of) Frobenius type and CV-structures on a vector bundle in the sense of Hertling. We study these structures in an abstract setting, and prove a convergence result which is relevant to the case of triangulated categories. An application to physical field theory is also briey discussed.File | Dimensione | Formato | |
---|---|---|---|
1512.01176.pdf
accesso aperto
Tipologia:
Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione
353.37 kB
Formato
Adobe PDF
|
353.37 kB | Adobe PDF | Visualizza/Apri |
CAG-2019-0027-0002-a002(1).pdf
accesso aperto
Tipologia:
Publisher's version/PDF
Dimensione
428.11 kB
Formato
Adobe PDF
|
428.11 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.