We study asymptotic relations connecting unipotent averages of Sp(2g,ℤ) automorphic forms to their integrals over the moduli space of principally polarized abelian varieties. We obtain reformulations of the Riemann hypothesis as a class of problems concerning the computation of the equidistribution convergence rate in those asymptotic relations. We discuss applications of our results to closed string amplitudes. Remarkably, the Riemann hypothesis can be rephrased in terms of ultraviolet relations occurring in perturbative closed string theory.

Equidistribution rates, closed string amplitudes, and the Riemann hypothesis / S.L. Cacciatori, M. Cardella. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2010:12(2010), pp. 25.1-25.15. [10.1007/JHEP12(2010)025]

Equidistribution rates, closed string amplitudes, and the Riemann hypothesis

S.L. Cacciatori;M. Cardella
2010

Abstract

We study asymptotic relations connecting unipotent averages of Sp(2g,ℤ) automorphic forms to their integrals over the moduli space of principally polarized abelian varieties. We obtain reformulations of the Riemann hypothesis as a class of problems concerning the computation of the equidistribution convergence rate in those asymptotic relations. We discuss applications of our results to closed string amplitudes. Remarkably, the Riemann hypothesis can be rephrased in terms of ultraviolet relations occurring in perturbative closed string theory.
Differential and Algebraic Geometry; Superstrings and Heterotic Strings
Settore FIS/02 - Fisica Teorica, Modelli e Metodi Matematici
2010
Article (author)
File in questo prodotto:
File Dimensione Formato  
Cacciatori-Cardella2010_Article_EquidistributionRatesClosedStr.pdf

accesso aperto

Tipologia: Publisher's version/PDF
Dimensione 280.99 kB
Formato Adobe PDF
280.99 kB Adobe PDF Visualizza/Apri
1007.3717.pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 172.45 kB
Formato Adobe PDF
172.45 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/786080
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact