Given a connected graph G=(V,E) and an integer (formula presented), the connected graph H=(V,F) where F is a family of elements of E, is a k-edge-connected spanning subgraph of G if H remains connected after the removal of any k-1 edges. The convex hull of the k-edge-connected spanning subgraphs of a graph G forms the k-edge-connected spanning subgraph polyhedron of G. We prove that this polyhedron is box-totally dual integral if and only if G is series-parallel. In this case, we also provide an integer box-totally dual integral system describing this polyhedron.

On k-edge-connected Polyhedra: Box-TDIness in Series-Parallel Graphs / M. Barbato, R. Grappe, M. Lacroix, E. Lancini (LECTURE NOTES IN COMPUTER SCIENCE). - In: Combinatorial Optimization / [a cura di] M. Baïou , B. Gendron, O. Günlük, A. Mahjoub. - [s.l] : Springer, 2020. - ISBN 9783030532611. - pp. 27-41 (( Intervento presentato al 6. convegno International Symposium on Combinatorial Optimization tenutosi a Montreal nel 2020 [10.1007/978-3-030-53262-8_3].

On k-edge-connected Polyhedra: Box-TDIness in Series-Parallel Graphs

M. Barbato;
2020

Abstract

Given a connected graph G=(V,E) and an integer (formula presented), the connected graph H=(V,F) where F is a family of elements of E, is a k-edge-connected spanning subgraph of G if H remains connected after the removal of any k-1 edges. The convex hull of the k-edge-connected spanning subgraphs of a graph G forms the k-edge-connected spanning subgraph polyhedron of G. We prove that this polyhedron is box-totally dual integral if and only if G is series-parallel. In this case, we also provide an integer box-totally dual integral system describing this polyhedron.
Settore MAT/09 - Ricerca Operativa
2020
Book Part (author)
File in questo prodotto:
File Dimensione Formato  
kecp_spgraph_lncs.pdf

accesso riservato

Descrizione: Articolo principale. Accepted paper conforme a quello apparso sulla rivista (dopo proof reading).
Tipologia: Publisher's version/PDF
Dimensione 361.96 kB
Formato Adobe PDF
361.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/781834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact