For linear operators L,T and nonlinear maps P, we describe classes of simple maps F = I −PT, F = L−P between Banach and Hilbert spaces, for which no point has more than two preimages. The classes encompass known examples (homeomorphisms, global folds) and the weaker, geometric, hypotheses suggest new ones. The operator L may be the Laplacian with various boundary conditions, as in the original Ambrosetti-Prodi the- orem, or the operators associated with the quantum harmonic oscillator, the hydrogen atom, a spectral fractional Laplacian, elliptic operators in non-divergent form. The maps P include the Nemitskii map P(u) = f(u) but may be non-local, even non-variational. For self-adjoint operators L, we employ familiar results on the nondegeneracy of the ground state. On Banach spaces, we use a variation of the Krein-Rutman theorem.

Positive eigenvectors and simple nonlinear maps / M. Calanchi, C. Tomei. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 280:7(2021 Apr 01), pp. 108823.1-108823.35. [10.1016/j.jfa.2020.108823]

Positive eigenvectors and simple nonlinear maps

M. Calanchi
Primo
;
2021

Abstract

For linear operators L,T and nonlinear maps P, we describe classes of simple maps F = I −PT, F = L−P between Banach and Hilbert spaces, for which no point has more than two preimages. The classes encompass known examples (homeomorphisms, global folds) and the weaker, geometric, hypotheses suggest new ones. The operator L may be the Laplacian with various boundary conditions, as in the original Ambrosetti-Prodi the- orem, or the operators associated with the quantum harmonic oscillator, the hydrogen atom, a spectral fractional Laplacian, elliptic operators in non-divergent form. The maps P include the Nemitskii map P(u) = f(u) but may be non-local, even non-variational. For self-adjoint operators L, we employ familiar results on the nondegeneracy of the ground state. On Banach spaces, we use a variation of the Krein-Rutman theorem.
Ambrosetti-Prodi theorem; folds; Krein-Rutman theorem; positivity preserving semigroups;
Settore MAT/05 - Analisi Matematica
Settore MATH-03/A - Analisi matematica
1-apr-2021
28-ott-2020
Article (author)
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022123620303669-main(1).pdf

accesso riservato

Tipologia: Publisher's version/PDF
Dimensione 620.52 kB
Formato Adobe PDF
620.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0022123620303669-main(5).pdf

accesso aperto

Tipologia: Post-print, accepted manuscript ecc. (versione accettata dall'editore)
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri
Calanchi_Tomei_JFA_rev1(2).pdf

accesso aperto

Tipologia: Pre-print (manoscritto inviato all'editore)
Dimensione 459.96 kB
Formato Adobe PDF
459.96 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/778286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact