Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays / E. Miele, A. Accardo, A. Falqui, M. Marini, A. Giugni, M. Leoncini, F. De Angelis, R. Krahne, E.D. Fabrizio. - In: SMALL. - ISSN 1613-6810. - 11:1(2015), pp. 134-140. [10.1002/smll.201401649]

Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

A. Falqui;A. Giugni;
2015

Abstract

Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.
surface; ZNO; molecules; nanocrystals; semiconductor; construction; deposition; droplets; fibers; growth
Settore FIS/03 - Fisica della Materia
2015
Article (author)
File in questo prodotto:
File Dimensione Formato  
Writing and Functionalisation of Suspended DNA NWRs_SMALL.pdf

accesso riservato

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/776842
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact