Tuning the magnetic behavior of nanoparticles via the control of their features has always been challenging because these features are mostly intertwined. In the last years, a novel synthetic approach based on cation-exchange has been reported, and one of its main advantages is to maintain the shape and size of nanoparticles. However, such a synthetic strategy has been seldom applied to iron oxide magnetic nanoparticles, where the substitution of iron with diverse transition element cations was described as occurring in their whole volume. Surprisingly, we found results quite discordant from the few ones so far published in exploiting again this approach. We show here that it unavoidably leads to core/shell structures with only the shell undergoing the cation-exchange. Moreover, the starting phase of iron oxide strongly dictates the number of iron cations that could be replaced: if it is structurally free of vacancies, like magnetite, the maximum amount of exchanged cations is low and only affects the nanoparticles’ most external, disordered layers. Conversely, the cation-exchange is boosted if the iron oxide phase is structurally prone to vacancies, like wüstite, and the shell where the iron cations have been partly substituted becomes quite thicker. These findings are further corroborated by the materials’ magnetic properties.

Unexpected Insights about Cation-Exchange on Metal Oxide Nanoparticles and Its Effect on Their Magnetic Behavior / S. Lentijo-Mozo, D. Deiana, E. Sogne, A. Casu, A. Falqui. - In: CHEMISTRY OF MATERIALS. - ISSN 0897-4756. - 30:21(2018), pp. 8099-8112.

Unexpected Insights about Cation-Exchange on Metal Oxide Nanoparticles and Its Effect on Their Magnetic Behavior

A. Casu
Penultimo
;
A. Falqui
Ultimo
2018

Abstract

Tuning the magnetic behavior of nanoparticles via the control of their features has always been challenging because these features are mostly intertwined. In the last years, a novel synthetic approach based on cation-exchange has been reported, and one of its main advantages is to maintain the shape and size of nanoparticles. However, such a synthetic strategy has been seldom applied to iron oxide magnetic nanoparticles, where the substitution of iron with diverse transition element cations was described as occurring in their whole volume. Surprisingly, we found results quite discordant from the few ones so far published in exploiting again this approach. We show here that it unavoidably leads to core/shell structures with only the shell undergoing the cation-exchange. Moreover, the starting phase of iron oxide strongly dictates the number of iron cations that could be replaced: if it is structurally free of vacancies, like magnetite, the maximum amount of exchanged cations is low and only affects the nanoparticles’ most external, disordered layers. Conversely, the cation-exchange is boosted if the iron oxide phase is structurally prone to vacancies, like wüstite, and the shell where the iron cations have been partly substituted becomes quite thicker. These findings are further corroborated by the materials’ magnetic properties.
nanocrystal heterostructures; electrocatalytic properties; core/shell nanocrystals; temperature; size; FEO/FE304; evolution; disorder; copper; bias
Settore FIS/03 - Fisica della Materia
2018
Article (author)
File in questo prodotto:
File Dimensione Formato  
Unexpected Insights about Cation-Exchange on Metal Oxide Nanoparticles and Its Effect on Their Magnetic Behavior - CHEM MATER.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Publisher's version/PDF
Dimensione 5.33 MB
Formato Adobe PDF
5.33 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2434/776154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact